新疆农业大学学位论文书写规范

上传人:xins****2008 文档编号:110764153 上传时间:2019-10-31 格式:DOC 页数:8 大小:48KB
返回 下载 相关 举报
新疆农业大学学位论文书写规范_第1页
第1页 / 共8页
新疆农业大学学位论文书写规范_第2页
第2页 / 共8页
新疆农业大学学位论文书写规范_第3页
第3页 / 共8页
新疆农业大学学位论文书写规范_第4页
第4页 / 共8页
新疆农业大学学位论文书写规范_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《新疆农业大学学位论文书写规范》由会员分享,可在线阅读,更多相关《新疆农业大学学位论文书写规范(8页珍藏版)》请在金锄头文库上搜索。

1、21世纪航天工业铝合金焊接工艺技术展望摘要:简要回顾了航天工业铝合金焊接技术的发展,并对国内外铝合金在航天器上的应用情况进行了综述和分析。介绍了铝合金焊接技术的最新发展和应用前景,其中包括变极性等离子焊、局部真空电子束焊、气脉冲焊接技术、搅拌摩擦焊、焊接修复技术以及焊接工艺裕度和焊接结构安全评定技术。 关键词:铝合金;焊接;航天1 前 言 铝合金不但具有高的比强度、比模量、断裂韧度、疲劳强度和耐腐蚀稳定性,同时还具有良好的成形工艺性和良好的焊接性,因此成为在航天工业中应用最广泛的一类有色金属结构材料。 例如,铝合金是运载火箭及各种航天器的主要结构材料。美国的阿波罗飞船的指挥舱、登月舱,航天飞机

2、氢氧推进剂贮箱、乘务员舱等也都采用了铝合金作为结构材料。我国研制的各种大型运载火箭亦广泛选用了铝合金作为主要结构材料。 航天工业铝合金焊接技术的发展和应用与材料的发展有着密切的联系,本文将简要回顾航天工业铝合金焊接技术的发展并介绍几种极有应用前景的铝合金焊接工艺技术。 2 铝合金焊接技术的发展 2.1 LD10CS铝合金焊接回顾 早期的一些导弹和远程运载火箭的推进剂贮箱结构材料主要采用AlMg系列合金,特别是退火和半冷作硬化状态的LF3、LF6防锈铝的应用最为普遍。这两种铝合金都具有优良的焊接性能1。 随着航天技术的发展,运载火箭的推进剂贮箱结构材料,从使用非热处理强化的防锈铝,转变到使用可热

3、处理强化的高强度铝合金。LD10CS合金已在多种大型运载火箭和固体导弹上获得成功的应用。由于它的超低温性能较好,因此在三子级的液氢、液氧推进剂贮箱上也获得了应用。 需要指出的是LD10合金的焊接性能较差,焊接时形成热裂纹的倾向较大,对焊接过程中的各种因素也比较敏感,焊接接头的断裂韧度较低,特别是当焊缝部位存在焊接缺陷时,液压强度试验时试验件经常发生低压爆破。 20世纪70年代,在研制LD10合金火箭推进剂贮箱初期,在焊接工艺方面曾遇到了极大的困难。在“三结合”攻关中发明的“两面三层焊”工艺(正面打底、盖面,背面清根封焊)使焊接接头性能达到了设计要求。在LD10焊接生产实践中总结得出:如果焊接接

4、头区的延伸率不小于3%,则焊接接头的塑性可以满足使用要求。在此后的许多年中,一直以“延伸率不小于3%”作为一个重要的验收指标。 几十年来,焊接工艺主要是氩弧焊(TIG),包括手工氩弧焊和自动氩弧焊。从焊接工艺方面看,为了减少焊接结构的焊接残余应力和变形,通常在焊接工艺选择上都尽量减少焊接热输入量。特别是对于热处理强化铝合金,由于焊接热过程的作用,在焊接热影响区存在软化区,塑性较好,强度较低。焊接接头强度系数为0.50.7。 为什么LD10CS贮箱采用两面三层焊工艺?理论分析和实践结果表明,若不采用此焊接方法,就会造成LD10CS铝合金焊接接头塑性较差,且焊缝背面焊趾处易出现裂纹。两面三层焊时,

5、清根和封底焊可消除此种裂纹。同时由于热输入量较大,热影响区发生不同程度的退火或过时效,使硬度降低,塑性提高,焊接拉伸试样断裂的位置是焊接软化区。这样在结构中,焊接接头在复杂的应力状态下以软化区的塑性和变形补偿了熔合区塑性的不足。但贮箱焊缝补焊后,有时仍发生低压爆破。 由于两面焊的特殊要求,限制了自动焊及焊接新技术(如真空电子束焊、变极性等离子焊等)的应用。这是因为,氩弧焊焊接热输入量比高能束的真空电子束焊要大,同时考虑到焊接接头的结构承载适应能力,难以应用焊接热输入较为集中的焊接新技术,制约了焊接新技术的应用。 在焊接生产中,铝合金焊缝内常见的缺陷为焊缝气孔。氢是铝及其合金熔焊时产生气孔的主要

6、原因。基体金属中含氢量、焊丝及基体金属表面氧化膜吸附的水分以及弧柱气氛中的水分都是焊缝气孔中氢的重要来源。航天焊接工作者经过不懈的攻关和努力保证了航天焊接产品的交付和发射成功。但是,由于诸多因素和条件的限制,在生产中个别贮箱仍存在气孔超差。 在焊接材料方面,国外使用的是焊接专用板材,基体金属的氢含量小于210-7。而国内铝合金板材制造技术条件中尚无对氢含量的要求。 2.2 铝合金2219和铝锂合金焊接概述 2219高强铝合金的突出特点是焊接性能好,从-253到+200均具有良好的力学性能、抗应力腐蚀性能,对焊接热裂纹的敏感性较低,焊接接头塑性及低温韧性较好。在美国已作为推进剂贮箱的主要结构材料

7、,美国土星号级贮箱等均采用了2219铝合金。前苏联在能源号和暴风雪号航天飞机均大量采用了1201(相当于2219)铝合金。 国内研制的S147铝合金与2219铝合金相类似,生成焊接裂纹的倾向性较低,但生成气孔的敏感性较强,尤其是熔合区、密集的微气孔是影响焊接接头性能的主要缺陷。 随着航天技术的发展,对铝合金的强度和减重提出了更展。因为每加入1%Li,可使铝合金质量减轻3%,弹性模量提高6%,比弹性模量增加9%,这种合金与在飞机产品上普遍使用的2024和7075合金相比,密度下降7%11%,弹性模量提高12%18%。前苏联的1420合金与广泛使用的杜拉铝(硬铝)16(2024)合金相比,密度下降

8、12%,弹性模量提高6%8%,抗腐蚀性好,疲劳裂纹扩展速率低,强度、屈服强度和延伸率相近、焊接性较好2。 前苏联航空材料研究所().等人于20世纪年代在发明了AlMgLi系的1420合金不久,就对该合金的焊接开展了研究。年代对该合金的焊接研究已经取得了成果,他们认为这种合金氩弧焊时,可采用AM6、AM6T和1557焊丝,焊接接头的强度系数达到0.7以上。焊前、焊后热处理对焊接接头强度有很大的影响,淬火状态下焊接的接头强度比淬火及人工时效状态焊接的强度低78.5 MPa,焊后淬火及人工时效又可以使焊接接头的强度系数达到0.91.0。1980年1420合金被用于制造米格-29超音速战斗机的焊接机身

9、、油箱、座舱,这使飞机的重量明显降低了24%。至今,1420合金已成功使用了30多年,广泛用于军用、民用飞机和火箭上3。 20世纪年代俄罗斯研制了高强度、高模量的1460(AlCuLi)合金,这种合金由于加入了Sc元素强化,使晶粒和亚晶结构变化,拉伸强度提高3050 MPa,焊接性能明显改善。1460合金焊接工艺与1420合金基本相同,可采用1201(AlCuMn)合金焊丝焊接,也可在焊丝中添加钪(Sc)元素。在对多种成分比较试验后,推荐应用CB-1207或CB-1217焊丝,这种焊丝的成分是在ALCu基础上添加Cu、Sc、Zr、Ti等,具体成分有待于进一步了解。应用此种焊丝可以显著地降低焊缝

10、热裂纹敏感性,氩弧焊焊接接头强度大于250 MPa,焊接接头强度系数大于0.5,焊后热处理焊接接头的强度、硬度增加。48这种焊丝可以保证无裂纹和细晶粒结构的接头,合理的选择焊接工艺和焊前准备可得到无气孔的焊接接头。 美国发现者号航天飞机的外贮箱采用了2195(AlCuLiMg)高强铝锂合金,取代原来使用了2540年的2219合金。新设计的贮箱SLWT(Super Light Weight Tank超轻重量贮箱),比原来的贮箱减重5%,即3 405 kg,其中LH2箱减重1 907 kg、LO2箱减重736 kg,箱间段减重341 kg,其他减重422 kg。每减轻1 kg质量可以增加1 kg有

11、效载荷,这样就增加3 405 kg的有效载荷。美国总共生产120台SLWT,完成全部航天飞行计划910。 2195-T8合金的贮箱采用4043焊丝,变极性等离子弧焊 (VPPA)焊接。VPPA具有高的电弧温度、高的电弧电压和更集中的热量。VPPA焊接2195-T8铝锂合金的关键是焊缝背面保护,铝锂合金含有活泼的Li元素,如焊接时背面保护不好,极易氧化。马歇尔飞行中心研制出长229 mm、宽25.4 mm、高152 mm的不锈钢“保护盒”,“保护盒”在焊接时随焊枪行走,使焊缝区域氧气少于0.5%。另外,研制了直径51 mm、长229 mm的不锈钢管装在工件背面,焊接时随焊枪移动,也可有效保护背面

12、焊缝。如果这两种保护装置同时使用,效果更好。 3 极具前途的几种工艺技术 3.1 变极性等离子弧焊接技术(VPPA) 1978年,美国NASA宇航局马歇尔宇航中心决定变极性等离子弧焊技术部分取代钨极氩弧焊工艺焊接航天飞机外贮箱。航天飞机外贮箱材料为2219铝合金,共焊接了6400 m焊缝,经100% X射线检测,未发现任何内部缺陷,焊缝质量比TIG多层焊明显提高。 变极性等离子焊接技术用于铝合金焊接,单道焊接铝合金厚度可达25.4 mm。其工艺特点是在焊接过程中,在焊接熔池中心存在一穿透的小孔,而且在实际生产中通常采用立向上焊工艺,既有利于焊缝的正面成形,又有利于熔池中氢的逸出,减少气孔缺陷。

13、因此被称为“零缺陷焊接”。 “八五”期间,在引进国外某公司的变极性等离子焊接系统的基础上,进行了LF6、LD10铝合金平板(厚3 mm、6 mm、10 mm)焊接工艺试验11。 “九五”期间,与哈尔滨工业大学联合开展了变极性等离子焊接技术研究,研制了变极性等离子焊接设备样机,并进行了LF6和LD10铝合金板材(厚3 mm、5 mm、12 mm)焊接工艺试验,完成了带有纵缝和环缝的贮箱模拟件焊接,解决了环缝焊接时起弧打孔和收弧填孔及焊缝首尾相接的难题,焊接模拟件通过了液压试验,将变极性等离子焊接技术的工程应用向前推进了一大步。 随着2219铝合金和2195铝锂合金的应用,在未来中厚度的大型贮箱焊

14、接生产中,变极性等离子焊接技术有着广阔的应用前景。 3.2 局部真空电子束焊接技术 由于真空电子束焊接工艺是将被焊工件置于真空环境中进行焊接,因此可以得到优质的焊缝。同时,电子束高的能量密度使焊缝较窄,深宽比大,焊接应力和变形较小,在工业各领域尤其是国防工业中得到了广泛的应用。 但对于一些大型构件如运载火箭贮箱壳体等,如果采用真空电子束焊接工艺,则需要较大的真空室,其容积可达数百立方米,这种电子束焊接设备造价很高。为了解决这一问题,国外开始设计和应用局部真空电子束焊接设备,不是将被焊工件整体放入真空室,而是在焊缝局部建立真空环境,从而完成焊接。 前苏联将局部真空电子束焊接技术应用于不同类型和尺

15、寸火箭燃料贮箱壳体的焊接,在壳体的纵缝、对接环缝及法兰环缝焊接中,有7种类型焊缝(纵缝、对接环缝、法兰环缝)应用局部真空电子束焊接工艺。20世纪年代初已用于2.5 m直径壳体环缝焊接,能源号火箭贮箱纵缝采用局部真空电子束焊接工艺,壁厚为42 mm,局部密封采用磁流体密封、橡胶圈密封等技术。 国内在“九五”期间,与中科院电工所合作研制了国内第1台法兰环缝局部真空电子束焊机(专利号:ZL002631776.6)12。电子枪与上真空室采用动密封结构,工件与上、下真空室间为静密封结构。焊接时电子枪可以实现极坐标运动。电子枪径向移动采用步进电机驱动,光栅尺检测位移;圆周方向转动通过交流伺服电机驱动,光码

16、盘检测器角位移。二次电子焊缝对中系统用于实现焊缝轨迹示教。采用两级微机控制,可编程序控制器(PLC)控制焊接参数可实现柔性焊接,即可焊接100300 mm直径的法兰环缝。局部真空室的真空度达到510-3Pa,高于国外同类产品水平。 在未来的2219铝合金和2195铝锂合金航天器厚壁结构中,特别对于焊接残余应力和变形要求较高的法兰环缝焊接生产中,局部真空电子束焊接技术应用对焊接质量的提高有着极为重要的意义。 3.3在航天工业中,铝合金焊接中应用较广的TIG和MIG工艺,保护气体采用氩气和氦气,其中以氩气应用较多。 就TIG焊而言,有交流氩弧焊和直流正接氦弧焊两种工艺。氦(He)和氩(Ar)相比,其最小电离能高,在其它条件和参数相同时,电弧电压较高。因此

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号