焊接变形控制技术

上传人:今*** 文档编号:108132260 上传时间:2019-10-22 格式:DOC 页数:8 大小:148.46KB
返回 下载 相关 举报
焊接变形控制技术_第1页
第1页 / 共8页
焊接变形控制技术_第2页
第2页 / 共8页
焊接变形控制技术_第3页
第3页 / 共8页
焊接变形控制技术_第4页
第4页 / 共8页
焊接变形控制技术_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《焊接变形控制技术》由会员分享,可在线阅读,更多相关《焊接变形控制技术(8页珍藏版)》请在金锄头文库上搜索。

1、焊接变形控制工艺编制: 校对: 审核: 批准: 重庆建工工业有限公司钢结构事业部2015年6月11日I1 焊接应力21.1焊接应力的种类22 焊接变形22.1焊接变形发生的原因22.2焊接变形的主要形式23 焊接变形的影响因素33.1材料因素的影响33.2结构设计因素的影响33.3焊接工艺的影响33.3.1焊接方法的影响33.3.2焊接接头形式的影响43.3.3焊接层数的影响43.4焊接参数的影响43.4.1电弧电压43.4.2焊接电压过高43.4.3焊接速度43.4.4焊丝伸出长度43.4.5焊枪倾斜角度44 焊接变形的预防与控制措施54.1设计措施54.4.1尽量减少焊缝数量54.4.2合

2、理地选择焊接的尺寸和形式54.4.3合理设计结构形式及合理安排焊缝位置54.2工艺措施54.2.1焊前预防措施54.2.2焊接过程控制措施64.3焊后矫正措施64.3.1机械矫正64.3.2加热矫正61 焊接应力 焊接时,由于焊缝局部加热到高温状态,焊件温度均匀不分布,造成钢结构不均匀冷却收缩而产生变形。其次,在焊接时,由于不同焊接热循环作用引起金相组织发生转变,随之而出现体积的变化,当体积变化受到周围金属阻碍时便产生了应力,从而出现整体变形。 焊接变形分为局部变形和整体变形。局部变形指焊接结构的某部分发生变形,在焊接中易于矫正;整体变形指整个结构的形状或尺寸发生变化,是由于焊接在各个方向上收

3、缩不均所引起的,这在焊接中尤为重要,一般不允许发生整体变形。焊接变形产生的原因很多,不均匀的局部加热和冷却是最主要原因。焊接时,焊件局部加热到熔化状态,形成了温度不均匀分布区,使焊接出现不均匀的热膨胀,热膨胀受到周围金属的阻碍不能自由膨胀而受到压应力,周围的金属则受到拉应力。当被加热金属受到的压应力超过屈服点时,就会产生塑性变形;焊接冷却时,由于加热的金属在加热时已产生了压缩的塑性变形,所以,最后的长度要比未被加热金属的长度短些,从而产生变形。1.1焊接应力的种类1.1.1热应力:又称温度应力。它是在不均匀加热及冷却过程中所产生的应力,它与加热温度和加热不均匀程度、焊件的钢度以及焊件材料的热物

4、理性能等因素有关。1.1.2相变应力:金属发生相变时,由于体积发生变化而引起的应力。1.1.3装配应力:在装配和安装过程中产生的应力。1.1.4残余应力:当构件上承受局部荷载或经受不均匀加热时,都会在局部地区产生塑性应变。当局部外载撤去后或热源离去,构件温度恢复到原始的均匀状态时,由于构件内部发生了不能恢复的塑性变形,因而产生了内应力,即残余应力。残留下来的变形即残余变形。焊接过程中焊件的热应力是随时间而变化的瞬时应力,焊后残余下来,即为残余应力。2 焊接变形2.1焊接变形发生的原因钢材的焊接通常采用熔化焊方法,把焊接局部连接处加热至溶化状态形成熔池,待其冷却结晶后形成焊缝,使原来分开的钢材连

5、接成整体。由于焊接加热时还焊接接头局部加热不均匀,金属冷却后沿焊缝纵向收缩时受到焊件低温部分的阻碍,使焊缝及其附近区域受拉应力,远离焊缝区域受压应力。因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形,焊接完成并冷却至常温后该塑性变形残留下来,焊接变形因此产生。 2.2焊接变形的主要形式焊接变形主要有收缩变形、角变形、弯曲变形、扭曲变形和破浪变形五种基本形式。其成因如下:收缩变形是由于焊缝的纵向(沿焊缝方向)和横向(垂直焊缝方向)收缩引起的角变形由于V型坡口对接焊焊缝布置不对称,造成焊缝上下横向收缩量不均匀而引起的变形弯曲变形T型梁焊接后,由于焊缝布置不对称,焊

6、缝多的一面收缩量大,引起的工件弯曲扭曲变形由于焊接过程中焊接顺序和焊接方向不合理引起的工件扭曲,又称为螺旋形变形,多出现在工字梁的焊接加工过程中波浪变形这种变形易发生在波板焊接过程中。是由于焊缝收缩使薄板局部引起较大的压应力而失去稳定性,焊后使构件成波浪形。错边变形焊接过程中,由于两块板材的热膨胀不一致,可能引起长度方向或厚度方向上的错边。3 焊接变形的影响因素焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。影响焊接变形的因素很多,但归纳起来主要有材料性能、设计结构和焊接工艺三个方面。3.1材料因素的影响 金属的焊接是金属的一种加工性能,接变形的影响不仅和焊接材料有关,

7、而且和母材也有关系,它决定于金属材料的本身性质和加工条件。金属的化学成分不同,其焊接性也不同。碳的影响最大,其它合金元素可以换算成碳的相当含量来估算它们对焊接性的影响。当CE0.4%时,钢材焊接性良好,冷裂纹倾向小,焊接时一般不需加热;当CE=0.40.6时,焊接性较差,冷冽倾向明显,焊接时需预热并采取其它工艺措施;CE0.6时,焊接性差,冷冽倾向严重,焊接时需要较高预热温度和严格的工艺措施。3.2结构设计因素的影响 焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。虽然焊接工件随拘束度的增加,焊接残余应力增加,焊接变形相应减少,但在焊接变形过程中,工件本身的拘束度是不断变化着的,复杂结

8、构自身的拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中的拘束度变化情况随结构复杂程度的增加而增加。在设计焊接结构时,常需要采用筋板或加强板来提高结构的稳定性和刚性,这样做不但增加了装配和焊接工作量,而且给焊接变形分析与控制带来了一定的难度。因此,在结构设计时针对结构板的厚度及筋板或加强筋的位置数量等进行优化,对减小焊接变形有着十分重要的作用。3.3焊接工艺的影响3.3.1焊接方法的影响熔焊使焊缝及其附近的母材经历了一个加热和冷却的热过程,由于温度分度不均匀,焊缝受到一次复杂的冶金过程,焊缝周围受到一次不同规范的热处理,引起相应的组织和性能的变化,直接影响焊缝质量。在金属结构焊接常用的

9、焊接方法有埋弧焊,手工焊和CO2气体保护焊等,各种焊接方法的热输入差别较大,其中埋弧焊热输入最大,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。一般情况下,焊接热输入大时,加热的高温区范围大,冷却速度慢,接头塑性变形区增大。3.3.2焊接接头形式的影响表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,

10、板厚上、下收缩量差别大,因而角变形较大。双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。3.3.3焊接层数的影响横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。 纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。3.4焊接参数的影响 焊接电流的选择根

11、据材料,板厚,焊丝直径,焊接位置,焊接电流越大,熔敷速度越快,熔深越大,焊缝易烧穿,产生裂纹,工件变形大,残余应力,飞溅多,焊接电流过小,易产生未焊透,未熔合,夹杂,成形不良。3.4.1电弧电压 为保证焊缝成形良好,应该选择电弧电压与焊接电流配合适当。3.4.2焊接电压过高 电弧稳定差,飞溅大,焊丝爆断,甚至无法焊接,焊接电压过小,熔深浅,熔宽窄小,余高H高,焊缝成形差。3.4.3焊接速度速度的快慢对焊缝的成形及焊接缺陷有重要的影响,焊接速度过快,出现咬边,下陷,气孔,未熔合,气体保护效果差,焊接速度过慢,熔敷金属堆积在电弧下方,熔深小,产生焊缝不均,未熔合,未焊透。 焊接速度对熔宽及熔深有明

12、显的影响,在其他规范不变的条件下,焊接速度增大时,电弧对母材的加热减少,熔宽明显减小。与此同时,电弧向后方排斥熔池金属的作用加强,电弧直接加热熔池低部的母材,使熔深略为增加。当焊接速度提高到40米/时以上时,由于电弧对母材加热量显著减少,熔深随焊接速度增大而减小。焊接速度过高会造成咬边、未焊透、焊缝粗糙不平等缺陷。降低焊接速度,熔池体积增大而存在时间增长,有利于气体浮出熔池,减小形成气孔的倾向。但焊接速度过低会形成易裂的“蘑菇形”焊缝,或产生烧穿、夹渣、焊缝不规则等缺陷。3.4.4焊丝伸出长度 焊丝直径1.2mm,一般伸出815 mm为宜,伸出长度过短,影响观看熔池,导电嘴易过热夹住焊丝,电阻

13、预热作用小,电弧功率大,熔深大,飞溅少,伸出长度过长,预热作用强,电弧功率小,熔深小,飞溅大,保护效果差。3.4.5焊枪倾斜角度 一般与工件垂直,与焊缝之间的夹角为6580,倾斜角度过大,气体保护效果差,容易产生气孔。4 焊接变形的预防与控制措施4.1设计措施4.4.1尽量减少焊缝数量焊缝截面积是指熔合线范围内的金属面积。坡口尺寸越大,焊缝面积越大,冷却时收缩引起的塑性变形量越大,收缩变形越大。在设计焊接结构时,应当避免不必要的焊缝,尽量选用型钢、冲压件代替焊件。合理地选择肋板的形状,适当地安排肋板的位置,优化肋板数量,避免不必要的焊缝,以减少肋板数量来减少焊接和矫正变形的工作量。4.4.2合

14、理地选择焊接的尺寸和形式 焊接尺寸直接关系到焊接工作量和焊接变形的大小。焊缝尺寸大,焊接量大,焊接变形就大。因此,要尽量减少焊缝的数量和尺寸,在保证结构的承载能力的条件下,设计时应尽量尽可能采用较小的坡口尺寸,减小焊缝截面积,对于板缝较大的对接接头应选“X”型坡口代替“V”型坡口,减少熔敷金属总量以减少变形。对于不需要进行强度计算的“T”型接头,应选用工艺上合理的最小焊脚尺寸,采用断续焊缝比采用连续焊缝更能减少变形。 当设计计算确定“T”接头角焊缝时,应采用连续焊缝,不应采用与之等强的断续焊缝,并应采用双面连续焊缝代替等强度的单面连续焊缝,以减少焊角尺寸。对于受力较大的“T”形式或“十”字接头

15、,在保证强度的条件下,应采用开坡口的角焊缝比一般角焊缝可大大减少焊缝金属,减少焊接变形量。表4-1 低碳钢最小焊脚尺寸(mm)板厚67181930315051100最小焊脚尺寸3468104.4.3合理设计结构形式及合理安排焊缝位置设计结构时应考虑焊接工作量最小,以及部件总装时的焊接变形量最小。薄板结构应选合适的板厚,减少骨架间距及焊角尺寸,以减少波浪变形。此外,还应避免设计曲线形结构。由于焊缝横向收缩通常比纵向收缩显著,因此应尽量将焊缝布置在平行于焊接变形量最小的方向,焊缝位置应尽量对称于截面中心线(或轴线),或者使焊缝接近中心线线(或轴线),这对于减少梁、柱等类型结构的扭曲曲变形有良好的效果。4.2工艺措施工艺措施是指在焊接构件生产制造过程中所采用的一系列措施,将其分为焊前预防措施、焊接过程中的控制措施和焊后矫正措施。4.2.1焊前

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号