第3章转速、电流反馈控制的直流调速系统

上传人:今*** 文档编号:107586548 上传时间:2019-10-20 格式:PPT 页数:179 大小:3.38MB
返回 下载 相关 举报
第3章转速、电流反馈控制的直流调速系统_第1页
第1页 / 共179页
第3章转速、电流反馈控制的直流调速系统_第2页
第2页 / 共179页
第3章转速、电流反馈控制的直流调速系统_第3页
第3页 / 共179页
第3章转速、电流反馈控制的直流调速系统_第4页
第4页 / 共179页
第3章转速、电流反馈控制的直流调速系统_第5页
第5页 / 共179页
点击查看更多>>
资源描述

《第3章转速、电流反馈控制的直流调速系统》由会员分享,可在线阅读,更多相关《第3章转速、电流反馈控制的直流调速系统(179页珍藏版)》请在金锄头文库上搜索。

1、第3章,转速、电流反馈控制的直流调速系统,对于经常正、反转运行的调速系统,缩短起、制动过程的时间是提高生产率的重要因素。 在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,使调速系统以最大的加(减)速度运行。 当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。,内容提要,转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。本章着重阐明其控制规律、性能特点和设计方法,是各种交、直流电力拖动自动控制系统的重要基础。我们将重点学习:,转速、电流双闭环直流调速系统及其静特性; 双闭环直流调速系统的数学模型和动态性能分析; 调

2、节器的工程设计方法; 按工程设计方法设计双闭环系统的调节器,内容提要,问题的提出 第2章中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。,3.1 转速、电流反馈控制直流调速系统的 组成及其静特性,1. 主要原因,是因为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。 在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值 Idcr 以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波

3、形。,F. 3-1 时间最优的起制动过程,2. 理想的起制动过程,理想起动过程波形如图,这时,起动电流呈方形波,转速按线性增长。这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程。,F. 3-1 理想的快速起动过程,3. 解决思路,为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值Idm的恒流过程。 按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。,现在的问题是,我们希望能实现控制: 起动过程,只有电流负反馈,没有转速负反馈; 稳态时,只有转速负反馈,没有电流负反馈。 怎样才能做到这种既存在转速和电流两

4、种负反馈,又使它们能分别在不同的阶段里起作用呢?,3.1.1 转速、电流反馈控制直流调速系统的组成,应该在起动过程中只有电流负反馈,没有转速负反馈,在达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。 在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。形成了转速、电流反馈控制直流调速系统(简称双闭环系统)。,1. 系统的组成,ASR转速调节器 ACR电流调节器 TG测速发电机 TA电流互感器 UPE电力电

5、子变换器,2. 系统电路结构,为了获得良好的静、动态性能,转速和电流两个调节器一般都采用 P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压Uc为正电压的情况标出的,并考虑到运算放大器的倒相作用。,系统电路原理图,图中表示出,两个调节器的输出都是带限幅作用的。 转速调节器ASR的输出限幅电压U*im决定了电流给定电压的最大值; 电流调节器ACR的输出限幅电压Ucm限制了电力电子变换器的最大输出电压Udm。,3. 限幅电路,二极管钳位的外限幅电路,U,in,RP,1,RP,2,R,lim,VD,1,VD

6、,2,R,1,C,1,R,0,U,ex,+,-,M,N,+,-,+,0,0,0,0,0,限幅电路(续),4. 电流检测电路,电流检测电路 TA电流互感器,3.1.2 系统稳态结构图和静特性,为了分析双闭环调速系统的静特性,必须先绘出它的稳态结构图,如下图。它可以很方便地根据上图的原理图画出来,只要注意用带限幅的输出特性表示PI 调节器就可以了。分析静特性的关键是掌握这样的 PI 调节器的稳态特征。,1. 系统稳态结构图,转速调节器ASR的输出限幅电压决定了电流给定的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压, 当调节器饱和时,输出达到限幅值,输入量的变化不再影响输

7、出,除非有反向的输入信号使调节器退出饱和; 当调节器不饱和时,PI调节器工作在线性调节状态,其作用是使输入偏差电压在稳态时为零。 对于静特性来说,只有转速调节器饱和与不饱和两种情况,电流调节器不进入饱和状态 。,2. 系统静特性,实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。 双闭环直流调速系统的静特性如图所示。,(1) 转速调节器不饱和,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零。,(3-1),从而得到上图静特性的CA段。,静特性的水平特性,与此同时,由于ASR不饱和,U*i U*im,从上述第二个关系式可知: Id

8、 Idm。 这就是说, CA段静特性从理想空载状态的 Id = 0 一直延续到 Id = Idm ,而 Idm 一般都是大于额定电流 IdN 的。这就是静特性的运行段,它是水平的特性。,(2)转速调节器饱和,ASR输出达到限幅值时,转速外环呈开环状态,转速的变化对转速环不再产生影响。 双闭环系统变成一个电流无静差的单电流闭环调节系统。稳态时 (3-2),静特性的垂直特性,式(3-2)所描述的静特性是上图中的AB段,它是垂直的特性。 这样的下垂特性只适合于 n n0 ,则Un U*n ,ASR将退出饱和状态。,在负载电流小于Idm时表现为转速无静差,转速负反馈起主要调节作用。 当负载电流达到Id

9、m时,转速调节器为饱和输出U*im,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。 采用两个PI调节器形成了内、外两个闭环的效果。 当ASR处于饱和状态时,Id=Idm,若负载电流减小,Idn0,n0,ASR反向积分,使ASR调节器退出饱和。,3. 两个调节器的作用,双闭环调速系统在稳态工作中,当两个调节器都不饱和时,各变量之间有下列关系 (3-3) (3-4) (3-5),3.1.3 各变量的稳态工作点和稳态参数计算,上述关系表明,在稳态工作点上, 转速 n 是由给定电压U*n决定的; ASR的输出量U*i是由负载电流 IdL 决定的; 控制电压 Uc 的大小则同时取

10、决于 n 和 Id,或者说,同时取决于U*n 和 IdL。,这些关系反映了PI调节器不同于P调节器的特点。比例环节的输出量总是正比于其输入量,而PI调节器则不然,其输出量的稳态值与输入无关,而是由它后面环节的需要决定的。后面需要PI调节器提供多么大的输出值,它就能提供多少,直到饱和为止。,反馈系数计算,鉴于这一特点,双闭环调速系统的稳态参数计算与单闭环有静差系统完全不同,而是和无静差系统的稳态计算相似,即根据各调节器的给定与反馈值计算有关的反馈系数:,转速反馈系数,电流反馈系数,(3-6),(3-7),两个给定电压的最大值U*nm和U*im由设计者选定,设计原则如下: U*nm受运算放大器允许

11、输入电压和稳压电源的限制; U*im 为ASR的输出限幅值。,3.2 双闭环直流调速系统的数学模型 和动态性能分析,本节提要 双闭环直流调速系统的动态数学模型 起动过程分析 动态抗扰性能分析 转速和电流两个调节器的作用,3.2.1 双闭环直流调速系统的动态数学模型,在单闭环直流调速系统动态数学模型的基础上,考虑双闭环控制的结构,即可绘出双闭环直流调速系统的动态结构图,如下图所示。,1. 系统动态结构,2. 数学模型,图中WASR(s)和WACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI调节器,则有,3.2.2 双闭环直流调速系统的动态过程分析,对调速系统而言,被控制的对象是转

12、速。 跟随性能可以用阶跃给定下的动态响应描述。 能否实现所期望的恒加速过程,最终以时间最优的形式达到所要求的性能指标,是设置双闭环控制的一个重要的追求目标。,1起动过程分析,电流Id从零增长到Idm,然后在一段时间内维持其值等于Idm不变,以后又下降并经调节后到达稳态值IdL。 转速波形先是缓慢升速,然后以恒加速上升,产生超调后,到达给定值n*。 起动过程分为电流上升、恒流升速和转速调节三个阶段, 转速调节器在此三个阶段中经历了不饱和、饱和以及退饱和三种情况。,图3-6 双闭环直流调速系统起动时的转速和电流波形,第阶段:电流上升阶段(0t1),电流从0到达最 大允许值,。,在t=0时,系统突加

13、阶跃给定信号Un*,在ASR和ACR两个PI调节器的作用下, Id很快上升,在Id上升到Idl之前,电动机转矩小于负载转矩,转速为零。 当 Id IdL 后,电机开始起动,由于机电惯性作用,转速不会很快增长,ASR输入偏差电压仍较大, ASR很快进入饱和状态,而ACR一般不饱和。直到Id = Idm , Ui = U*im 。,第阶段:恒流升速阶段(t1t2),Id基本保持在Idm, 电动机加速到了给定值n*。,ASR调节器始终保持在饱和状态,转速环仍相当于开环工作。系统表现为使用PI调节器的电流闭环控制, 电流调节器的给定值就是ASR调节器的饱和值U*im,基本上保持电流Id = Idm不变

14、, 电流闭环调节的扰动是电动机的反电动势,它是一个线性渐增的斜坡扰动量,系统做不到无静差,而是Id略低于Idm。,第阶段:转速调节阶段(t2以后),第阶段起始时刻是n上升到了给定值n*。,n上升到了给定值n*,Un=0。因为IdIdm,电动机仍处于加速过程,使n超过了n* ,称之为起动过程的转速超调。 转速的超调造成了Un0,ASR退出饱和状态,Ui和Id很快下降。转速仍在上升,直到t=t3时,Id= Idl ,转速才到达峰值。 在t3t4时间内, Id Idl,转速由加速变为减速,直到稳定。 如果调节器参数整定得不够好,也会有一段振荡的过程。 在第阶段中, ASR和ACR都不饱和,电流内环是

15、一个电流随动子系统。,综上所述,双闭环直流调速系统的起动过程有以下三个特点: (1) 饱和非线性控制; (2) 转速超调; (3) 准时间最优控制。,起动过程分析结果,(1) 饱和非线性控制,根据ASR的饱和与不饱和,整个系统处于完全不同的两种状态: 当ASR饱和时,转速环开环,系统表现为恒值电流调节的单闭环系统; 当ASR不饱和时,转速环闭环,整个系统是一个无静差调速系统,而电流内环表现为电流随动系统。,(2)转速超调,由于ASR采用了饱和非线性控制,起动过程结束进入转速调节阶段后,必须使转速超调, ASR 的输入偏差电压 Un 为负值,才能使ASR退出饱和。 这样,采用PI调节器的双闭环调

16、速系统的转速响应必然有超调。,(3)准时间最优控制,起动过程中的主要阶段是第II阶段的恒流升速,它的特征是电流保持恒定。一般选择为电动机允许的最大电流,以便充分发挥电动机的过载能力,使起动过程尽可能最快。 这阶段属于有限制条件的最短时间控制。因此,整个起动过程可看作为是一个准时间最优控制。,最后,应该指出,对于不可逆的电力电子变换器,双闭环控制只能保证良好的起动性能,却不能产生回馈制动,在制动时,当电流下降到零以后,只好自由停车。必须加快制动时,只能采用电阻能耗制动或电磁抱闸。,2动态抗扰性能分析,双闭环系统与单闭环系统的差别在于多了一个电流反馈环和电流调节器。 调速系统,最主要的抗扰性能是指抗负载扰动和抗电网电压扰动性能, 闭环系统的抗扰能力与其作用点的位置有关。,(1). 抗负载扰动,3-7 直流调速系统的动态抗负载扰动作用,抗负载扰动(续)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号