电容电流危害及消弧线圈的发展资料

上传人:E**** 文档编号:107468154 上传时间:2019-10-19 格式:DOC 页数:3 大小:41KB
返回 下载 相关 举报
电容电流危害及消弧线圈的发展资料_第1页
第1页 / 共3页
电容电流危害及消弧线圈的发展资料_第2页
第2页 / 共3页
电容电流危害及消弧线圈的发展资料_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《电容电流危害及消弧线圈的发展资料》由会员分享,可在线阅读,更多相关《电容电流危害及消弧线圈的发展资料(3页珍藏版)》请在金锄头文库上搜索。

1、论单相接地电容电流危害及消弧线圈的发展煤炭工业部济南设计研究院 周海斌、魏岱宁摘要:本文介绍了单相接地电容电流的危害、传统消弧线圈存在的问题以及现在国内主要的几种消弧线圈的特点。关键词:电容电流、消弧线圈作者简介:周海斌,男,1979年生,2001年毕业于山东科技大学电气工程系,毕业后进入济南煤炭设计院从事电气专业设计至今。通讯地址:济南市堤口路141号煤炭设计院 250031魏岱宁,男,1976年生,2000年毕业于山东工业大学工业自动化系,毕业后进入济南煤炭设计院从事电气专业设计至今。通讯地址:济南市堤口路141号煤炭设计院 250031 Discussing single-phase g

2、rounding capacitance currents damage and developing of arc arrest coilJinan Institute of Design & Research,Ministry of Coal Industry Zhou Haibin 、Wei Daining Abstract: This text introduced the single-phase grounding capacitance currents damage、tradition arc arrest coil existing problems and characte

3、ristics of a few primary kinds arc arrest coil. Key words: capacitance current、arc arrest coil一、我国城乡配电网中性点接地方式的发展概况建国初期,我国各大城市电网开始改造简化电压等级,将遗留下来的3kV、6kV配电网相继升压至10kV,解放前我国城市配电网中性点不接地、直接接地和低电阻接地方式都存在过,上海10kV电缆配电网中性点不接地、经电缆接地、经电抗接地3种方式并存运行至今,北京地区10kV系统中性点低电阻与消弧线圈并联接地,上海35kV系统中性点经消弧线圈和低电阻接地2种方式并存至今。但是,从

4、50年代至80年代中期,我国10(6)66kV系统中性点,逐步改造为采用不接地或经消弧线圈接地两种方式,这种情况在原水利电力部颁发的电力设备过电压保护设计技术规程SDJ7-79中规定得很明确。80年代中期我国城市10kV配电网中,电缆线路增多,电容电流相继增大,而且运行方式经常变化,当电缆发生单相接地故障时间一长,往往发展成为二相短路。 二、单相接地电容电流的危害目前我国635kV的电网大多采用中性点不接地的运行方式。现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,

5、其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。单相接地电容电流的危害主要体现在以下四个方面:1、产生弧光接地过电压。2、造成接地点热破坏及接地网电压升高。3、产生交流杂散电流。4、接地电弧引起瓦斯煤尘爆炸。三、消弧线圈的作用消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得

6、故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。四、传统消弧线圈存在的问题 当366kV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式,通过计算电网当前脱谐度( = (IL- IC)/IC 100%)与设定值的比较,决定是否调节消弧圈的分接头,过去选用的传统消弧线圈必须停电调节档位,在运行中暴露出许多问题和隐患,具体表现如下: 1 由于传统消弧线圈没有自动测量系统,不能实时测量电网对地电容电流和位移电压,当电网运行方式

7、或电网参数变化后靠人工估算电容电流,误差很大,不能及时有效地控制残流和抑制弧光过电压,不易达到最佳补偿。 2 传统消弧线圈按电压等级的不同、电网对地电容电流大小的不同,采用的调节级数也不同,一般分五级或九级,级数少、级差电流大,补偿精度很低。 3 调谐需要停电、退出消弧线圈,失去了消弧补偿的连续性,响应速度太慢,隐患较大,只能适应正常线路的投切。如果遇到系统异常或事故情况下,如系统故障低周低压减载切除线路等,来不及进行调整,易造成失控。若此时正碰上电网单相接地,残流大,正需要补偿而跟不上,容易产生过电压而损坏电力系统绝缘薄弱的电器设备,引起事故扩大、雪上加霜。 4由于消弧线圈抑制过电压的效果与

8、脱谐度大小相关,实践表明:只有脱谐度不超过5%时,才能把过电压的水平限制在2.6倍的相电压以下(见参考文献1),传统消弧线圈则很难做到这一点。 5运行中的消弧线圈不少容量不足,只能长期在欠补偿下运行。传统消弧线圈大多数没有阻尼电阻,其与电网对地电容构成串联谐振回路,欠补偿时遇电网断线故障易进入全补偿状态(即电压谐振状态),这种过电压对电力系统绝缘所表现的危害性比由电弧接地过电压所产生的危害更大。既要控制残流量小,易于熄弧;又要控制脱谐度保证位移电压不超标,这对矛盾很难解决。鉴于上述因素,只好采用过补偿方式运行,补偿方式不灵活,脱谐度一般达到15%25%,甚至更大,这样消弧线圈抑制弧光过电压效果

9、很差,几乎与不装消弧线圈一样。 6单相接地时,由于补偿方式、残流大小不明确,用于选择接地回路的微机选线装置更加难以工作。此时不能根据残流大小和方向或采用及时改变补偿方式或调档变更残流的方法来准确选线。该装置只能依靠含量极低的高次谐波(小于5%)的大小和方向来判别,准确率很低,这也是过去小电流选线装置存在的问题之一。 7 为了提高我国电网技术和装备水平,国家正在大力推行电网通讯自动化和变电站综合自动化的科技方针,实现四遥(遥信、遥测、遥调、遥控),进而实现无人值班,传统消弧线圈根本不具备这个条件。五、自动跟踪消弧线圈补偿技术自动跟踪补偿消弧线圈装置可以自动适时的监测跟踪电网运行方式的变化,快速地

10、调节消弧线圈的电感值,以跟踪补偿变化的电容电流,使失谐度始终处于规定的范围内。大多数自动跟踪消弧装置在可调的电感线圈下串有阻尼电阻,它可以限制在调节电感量的过程中可能出现的中性点电压升高,以满足规程要求不超过相电压的15%。当电网发生永久性单相接地故障时,阻尼电阻可由控制器将其短路,以防止损坏。六、目前国内的几种产品自动跟踪补偿消弧线圈按改变电感方法的不同,大致可分为有分接头的调匝式,有可动铁芯的调气隙式,磁阀式调节的消弧线圈,高短路阻抗变压器式消弧系统以及调容式消弧补偿装置等。现仅介绍主要的三种产品。1、调匝式该装置属于随动式补偿系统,它同调气隙式的唯一区别是动芯式消弧线圈用有载调匝式消弧线

11、圈取代,这种消弧线圈是用原先的人工调匝消弧线圈改造而成,即采用有载调节开关改变工作绕组的匝数,达到调节电感的目的。其工作方式同调气隙式完全相同,也是采用串联电阻限制谐振过电压。该装置同调气隙式相比,消除了消弧线圈的高噪音,但是却牺牲了补偿效果,消弧线圈不能连续调节,只能离散的分档调节,补偿效果差,并且同样具有过电压水平高,电网中原有方向型接地选线装置不能使用及串联的电阻存在爆炸的危险等缺点,另外该装置比较零乱,它由四部分设备组成(接地变压器,消弧线圈、电阻箱、控制柜)。2、调气隙式调气隙式属于随动式补偿系统。其消弧线圈属于动芯式结构,通过移动铁芯改变磁路磁阻达到连续调节电感的目的。然而其调整只

12、能在低电压或无电压情况下进行,其电感调整范围上下限之比为2.5倍。控制系统的电网正常运行情况下将消弧线圈调整至全补偿附近,将约100欧电阻串联在消弧线圈上。用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中性点电位升高小于15%的相电压)。当发生单相接地后,必须在0.2S内将电阻短接实现最佳补偿,否则电阻有爆炸的危险。该产品的主要缺点主要有四条:(1)工作噪音大,可靠性差:动芯式消弧线圈由于其结构有上下运动部件,当高电压实施其上后,振动噪音很大,而且随着使用时间的增长,内部越来越松动,噪音越来越大。串联电阻约3kW,100M。当补偿电流为50A时,需要250kW容量的电阻才能长期工作,所

13、以在接地后,必须迅速切除电阻,否则有爆炸的危险。这就影响到整个装置的可靠性。(2)调节精度差:由于气隙微小的变化都能造成电感较大的变化,电机通过机械部件调气隙的精度远远不够。用液压调节成本太高。(3)过电压水平高:在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联谐振电阻将稳态谐振过电压限制在允许范围内,但是电网中的各种扰动(大电机投切,非同期合闸,非全相合闸等),使得其瞬态过电压危害较为严重。(4)功率方向型单相接地选线装置不能继续使用。3、偏磁式电控无级连续可调消弧线圈,全静态结构,内部无任何运动部件,无触点,调节范围大,可靠性高,调节速度快。这种线圈的基本工作原理是利用施

14、加直流励磁电流,改变铁芯的磁阻,从而改变消弧线圈电抗值的目的,它可以带高压以毫秒级的速度调节电感值。综上所述:采用动态补偿方式,从根本上解决了补偿系统串联谐振过电压与最佳补偿之间相互矛盾的问题。众所周知,消弧线圈在高压电网正常运行时无任何好处,如果这时调谐到全补偿或接近全补偿状态,会出现串联谐振过电压使中性点电压升高,电网中各种正常操作及单相接地以外的各种故障的发生都可能产生危险的过电压。所以电网正常运行时,调节消弧线圈使其跟踪电网电容电流的变化有害无利,这也就是电力部门规定“固定式消弧线圈不能工作在全补偿或接近全补偿状态”的原因。国内同类自动补偿装置均是随动系统,都是在电网尚未发生接地故障前

15、即将消弧线圈调节到全补偿状态等待接地故障的发生,这了避免出现过高的串联谐振过电压而在消弧线圈上串联一阻尼电阻,将稳态谐振过电压限制到容许的范围内,并不能解决暂态谐振过电压的问题,另外由于电阻的功率限制,在出现接地故障后必须迅速的切除,这无疑给电网增加了一个不安全因素。偏磁式消弧线圈不是采用限制串联谐振过电压的方法,而是采用避开谐振点的动态补偿方法,根本不让串联谐振出现,即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬时(约20ms)调节消弧线圈实施最佳补偿。参考文献:电力工程电气设计手册上册,水利电力部西北电力设计院编,水利电力出版社消弧线圈自动调谐原理 上海交通大学出版社,1993。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 其它办公文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号