第6章医学磁共振成像(mri)设备与应用

上传人:今*** 文档编号:107449941 上传时间:2019-10-19 格式:PPT 页数:54 大小:2.17MB
返回 下载 相关 举报
第6章医学磁共振成像(mri)设备与应用_第1页
第1页 / 共54页
第6章医学磁共振成像(mri)设备与应用_第2页
第2页 / 共54页
第6章医学磁共振成像(mri)设备与应用_第3页
第3页 / 共54页
第6章医学磁共振成像(mri)设备与应用_第4页
第4页 / 共54页
第6章医学磁共振成像(mri)设备与应用_第5页
第5页 / 共54页
点击查看更多>>
资源描述

《第6章医学磁共振成像(mri)设备与应用》由会员分享,可在线阅读,更多相关《第6章医学磁共振成像(mri)设备与应用(54页珍藏版)》请在金锄头文库上搜索。

1、第6章 医学磁共振成像(MRI)设备与应用,本章目录:,6.1 MRI成像系统简介 6.2 MRI检查的临床应用 6.3 MRI成像检查的优缺点 6.4 MRI影像设备新技术进展,6.1 MRI成像系统简介 6.1.1 MRI影像设备发展概况 6.1.2 MRI影像设备功能 6.1.3 MRI影像设备主要性能指标,6.1.1 MRI影像设备发展概况 磁共振成像技术是在磁共振波谱学的基础上发展起来的。磁共振成像自出现以来曾被称为:核磁共振成像、自旋体层成像、核磁共振体层成像、核磁共振CT等 。 1945年由美国加州斯坦福大学的布洛克(Bloch)和麻省哈佛大学的普塞尔(Purcell)教授同时发

2、现了磁共振的物理现象,即处在某一静磁场中的原子核受到相应频率的电磁波作用时,在它们的核能级之间发生共振跃迁现象。因此两位教授共同获得1952年诺贝尔物理学奖。 磁共振的物理现象被发现以后,很快形成一门新兴的医学影像学科磁共振波谱学 。,1971年纽约州立大学的达曼迪恩(Damadian)教授在科学杂志上发表了题为“核磁共振(NMR)信号可检测疾病”和“癌组织中氢的T1时间延长”等论文, 1973年曼斯菲德(Mansfields)研制出脉冲梯度法选择成像断层。 1974年英国科学家研制成功组织内磁共振光谱仪。 1975年恩斯托(Ernst)研制出相位编码成像方法。 1976年,得到了第一张人体M

3、R图像(活体手指)。 1977年磁共振成像技术进入体层摄影实验阶段。 几十年期间,有关磁共振的研究曾在三个领域(物理、化学、生理学或医学)内获得了六次诺贝尔奖。,6.1.2 MRI影像设备功能 现代磁共振成像系统大体结构都很相似,基本上由四个系统组成:即磁体系统、梯度磁场系统、射频系统和计算机系统。,1磁体系统 磁体系统是磁共振成像系统最重要、成本最高的部件,是磁共振系统中最强大的磁场,平时我们评论磁共振设备的大小就是指静磁场的场强数值,单位用特斯拉(Tesla,简称T)或高斯(Gauss)表示,1T=1万高斯。 临床上磁共振成像要求磁场强度在0.053T范围内。一般将0.3T称为低场,0.3

4、T1.0T称为中场,1.0T称为高场。磁场强度越高,信噪比越高,图像质量越好。但磁场强度过高也带来一些不利的因素。 为了获得不同场强的磁体,生产厂商制造出了不同类型的磁体,常见的磁体有永久磁体、常导磁体和超导磁体。,(1)永久磁体 永久磁体是由永久磁铁(如铁氧体或铷铁)的磁砖拼砌而成。它的结构主要有两种,即环型和轭型。 优点是:造价低,场强可以达到0.3T,能产生优质图像,需要功率极小,维护费用低,可装在一个相对小的房间里。 缺点是:磁场强度较低,磁场的均匀度和强度欠稳定,易受外界因素的影响(尤其是温度),不能满足临床波谱研究的需要。,(2)常导磁体 常导磁体是根据电流产生磁场的原理设计的。当

5、电流通过圆形线圈时,在导线的周围会产生磁场。常导磁体的线圈是由高导电性的金属导线或薄片绕制而成。它的结构主要由各种线圈组成。 优点是:造价较低,不用时可以停电,在0.2T以下可以获得较好的临床图像。 缺点是:磁场的不稳定性因素主要是受供电电源电压波动的影响,均匀度差。另外易受环境因素(如温度、线圈绕组的位置或尺寸)的影响.,(3)超导磁体 荷兰科学家昂尼斯(Kamerlingh Onnes) 在1911年首先发现某些物质的电阻在超低温下急剧下降为零的超导性质,电阻的突然消失意味着物质已转变为某种新的状态,这些物质称为超导体。科学家昂尼斯获得了1913年诺贝尔物理学奖。 优点是:场强高,稳定性和

6、均匀度好,因此可开发更多的临床应用功能。 缺点是:技术复杂和成本高。,2梯度磁场系统 梯度磁场简称梯度场,梯度是指磁场强度按其磁场的位置(距离)的变化而改变,它的产生是由梯度线圈完成的,一般在主磁体空间沿着X、Y、Z三个方向放置。梯度线圈有三组即GX、GY、GZ,叠加在静磁场的磁体内,当线圈通电时可在静磁场中形成梯度改变。,3射频系统 射频脉冲磁场简称射频脉冲(radio frequency,RF)是一种以正弦波震荡的射频电波。磁共振系统中应用的频率较低,相当于调频广播FM波段,根据静磁场的强度不同其RF频率也不同。 射频系统作用:用来发射射频磁场,激发样品的磁化强度产生磁共振,同时,接收样品

7、磁共振发射出来的信号,通过一系列的处理,得到数字化原始数据,送给计算机进行图像重建。它是由发射射频磁场部分和接收射频信号部分组成。,4计算机系统 在MRI设备中,计算机系统包括各种规模的计算机、单片机、微处理器等,构成了MRI设备的控制网络。信号处理系统可采用高档次微型机负责信号预处理、快速傅立叶变换和卷积反投影运算。微机系统负责信息调度(如人机交互等)与系统控制(如控制梯度磁场、射频脉冲)。,(1)主计算机系统及其功能 功能:主要是控制用户与磁共振各系统之间的通信,负责对整个系统各部分的运行进行控制,使整个成像过程各部分的动作协调一致,产生所需的高质量图像。并通过运行扫描软件来满足用户的所有

8、应用要求,如扫描控制(控制梯度磁场、射频脉冲)、病人数据管理、归档图像、控制图像的重建和显示等、评价图像以及机器检测(包括自检)等。 组成:主机、磁盘存储器、光盘存储器、控制台、主图像显示器(主诊断台)、辅助图像显示器(辅诊断台或工作站)、图像硬拷贝输出设备(多幅相机、激光相机)、网络适配器、测量系统的接口部件等。主图像显示器又是控制台的一部分,用于监视扫描和机器的运行状况。,(2)主计算机系统中运行的软件 整个MRI系统从物理的观点来看可分为用户层、计算机层、接口层和测量系统等四层。从控制的观点来看,又可分为软件和硬件两层。应用软件通过操作系统等系统软件与主计算机发生联系,从而控制整个MRI

9、设备的运行。如图所示。,1)系统软件 系统软件用于计算机自身的管理、维护、控制和运行,以及计算机程序的翻译、装载和维护的程序组。系统软件分为操作系统(系统软件的核心)、语言处理系统和常用例行服务程序等三个模块。 2)应用软件 应用软件是指为某一应用目的而特殊设计的程序组。在MRI系统中,运行的应用软件就是磁共振成像的软件包。软件包中的模块通常有病人信息管理、图像管理、扫描及扫描控制(应用软件的核心)、系统维护、网络管理、主控程序等。 3)应用软件的信息交换 应用软件从用户那里直接得到需求信息,将用户的请求转变为控制数据发往测量、控制设备,获得测量数据,根据用户的需求输出图像。,(3)图像重建

10、图像的重建是一个极其复杂的信号处理过程,必须在复杂且严格的程序软件控制下进行。图像重建的本质是对原始数据的高速数学运算(包括累加平均去噪声、相位校正、傅立叶变换等)。图像重建既可用软件完成也可用硬件完成,软件重建的速度要慢于硬件。,(4)图像显示 图像重建结束后,得到的是表示图像各点不同亮度的一组数据,这些图像数据立即被送入主计算机系统的海量存储器或硬盘中,并以图像的形式输出才能让人眼看到。最成熟、最受欢迎的显示方法是电子视频显示系统,目前比较流行的是液晶显示器。图像的显示不仅限于当前的病人,在会诊或进行回顾性研究时还需要调出以往病人的图像。,6.1.3 MRI影像设备主要性能指标,本节介绍了

11、MRI影像设备的主要性能指标,包括主磁体、梯度磁场、射频线圈的主要性能指标。,(1)磁场强度 磁共振设备磁场强度的大小就是指静磁场的场强数值大小,单位用特斯拉(Tesla,简称T)或高斯(Gauss)来表示,1T=1万高斯。 (2)磁场均匀度 所谓磁场均匀度是指在特定容积(常取球形空间)限度内磁场的同一性程度,即穿过单位面积的磁感应线是否相同。,(3)磁场稳定度 磁场的稳定度分时间稳定度和热稳定度两种。 时间稳定度是指磁场随时间而变化的程度。磁场随时间变化会产生相位差,导致图像伪影。 热稳定度是指磁场值随环境温度变化而漂移的程度。永磁体和常导磁体的热稳定度较差,超导磁体的时间稳定度和热稳定度都

12、能满足要求。,(4)有效孔径 有效孔径是指梯度线圈、匀场线圈、射频体线圈和内护板等部件均安装完毕后所得到的空间)。全身MRI设备,磁体有效孔径须足以容纳人体为宜,一般来说,内径应大于65厘米。孔径较小可使病人产生幽闭恐惧感。 年来出现的开放式磁体使病人躺在半敞开的检查床上,不会产生幽闭恐惧感,并能开展磁共振介入治疗项目。,(5)磁场的逸散度 强大的主磁体周围形成的逸散磁场,其逸散程度称为逸散度。它的危害是对附近的铁磁性物体产生很强的吸引力,对人体健康、医疗仪器设备受到不同程度的损害、干扰和破坏。逸散程度的措施是对磁体采取各种有效的屏蔽。,2梯度磁场的性能指标 (1)有效容积(梯度场的均匀容积)

13、 有效容积是指线圈所包容的、其梯度场能够满足一定线性要求的空间区域。 (2)梯度场的线性 梯度场的线性是衡量梯度场平稳度的指标。线性越好,表明梯度场越精确,图像的质量就越好。,(3)梯度场的强度 梯度场强度是指梯度场能够达到的最大值。与主磁场相比梯度磁场是相当微弱的。梯度场强度大,磁场梯度就可以更大些,可进行超薄层面的扫描。 (4)梯度场变化率和梯度上升时间 梯度场变化率是指单位时间内梯度场变化的程度,即最大梯度与上升时间的比率,亦称梯度切换率。梯度上升时间是指梯度场达到某一预定值所需的时间。梯度上升性能的提高,可开发更快速的成像序列.,(5)梯度场工作周期 梯度场工作周期是指在一个成像周期的

14、时间内梯度场工作时间所占的百分数。成像周期是指MRI设备采集一次数据所需的时间,即一个脉冲序列执行一遍所需的时间。梯度场工作周期与成像层数有关,成像层数越多,梯度场的工作周期百分数越高。,6.2 MRI检查的临床应用,6.2.1 中枢神经系统检查 6.2.2 颈部检查 6.2.3 胸部检查 6.2.4 腹部检查 6.2.5 盆腔检查 6.2.6 骨骼肌肉与关节检查,T1和T2: T1和T2是组织在一定时间间隔内接受一系列脉冲后的物理变化特性,不同组织有不同的T1和T2,它取决于组织内氢质子对磁场施加的射频脉冲的反应。 TR和TE: TR是重复时间即射频脉冲的间隔时间,TE是回波时间即从施加射频

15、脉冲到接受到信号问的时间,TR和TE的单位均为毫秒(ms),可以做出分别代表组织Tl或T2特性的图像(T1加权像或T2加权像;通过成像参数的设定也可以做出既有Tl特性又有T2特性的图像,称为质子密度加权像。,T1加权像和T2加权像: 观察图像的TE和TR值可区分,TE短可为20ms,长可为80ms,TR短可为600ms,长可为3000ms。短TE短TR为T1加权像,而TE、TR均长的为T2加权像,短TE长TR者为质子密度加权像。 观察液体结构如脑室、膀胱或脑脊液,若液体是亮的,很可能为T2加权像,若液体是暗的,则可能为T1加权像。,磁共振成像检查常用的成像序列和检查方法: 磁共振图象是通过采用

16、特定的成像序列扫描而获得的。目前,临床上最常用的是自旋回波序列(SE序列)。通过改变序列中的TR(射频重复时间)和TE(回波时间)两个参数,可分别获得质子密度、T1和T2的加权图像,三种不同成像参数的加权图像,各分别代表了组织的三种不同的磁共振特性,借以分辨正常组织并识别病变。,MRI造影剂的种类及适应症: (一)、种类: 1、顺磁性阳性造影剂。常用的有Gd-DTPA(马根维显;磁显葡胺)等。其作用主要使T1缩短,在T1加权像上呈高信号。 2、超顺磁性物质。常用的有纳米氧化铁颗粒(SPIO)等。其作用主要使T2缩短,在T2加权像上是低信号。 (二)、适应症: 1、某些肿瘤的鉴别诊断。 2、确定血脑屏障是否被破坏。 3、提高病变的发现率。,对病人进行磁共振成像检查时: 要避免带有含铁等顺磁性物质的物品,如手表、金属项链、假牙、金属钮扣、金属避孕环等进入检查室,因为这些带有顺磁性物质的物品,可使图像中产生大片的无信号伪影,不利于病灶的显示。带有心脏起搏器的病人,严禁做磁共振成像检查。对体内有金属弹片存留、术后有银夹残留,金属性内固定板、假关

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号