6.电磁感应剖析

上传人:今*** 文档编号:107243319 上传时间:2019-10-18 格式:PPT 页数:70 大小:1.26MB
返回 下载 相关 举报
6.电磁感应剖析_第1页
第1页 / 共70页
6.电磁感应剖析_第2页
第2页 / 共70页
6.电磁感应剖析_第3页
第3页 / 共70页
6.电磁感应剖析_第4页
第4页 / 共70页
6.电磁感应剖析_第5页
第5页 / 共70页
点击查看更多>>
资源描述

《6.电磁感应剖析》由会员分享,可在线阅读,更多相关《6.电磁感应剖析(70页珍藏版)》请在金锄头文库上搜索。

1、第六章,电磁感应,第六章 电磁感应,1用楞次定律判断感应电流和感应电动势方向。 2自感现象、互感现象及有关计算。,教学重点,1理解电磁感应现象,掌握产生电磁感应的条件及感应电流方向的判断。 2理解感应电动势的概念,掌握电磁感应定律及有关的计算。 3理解自感、互感现象及自感系数、互感系数的概念,了解自感现象和互感现象在实际中的应用。 4理解互感线圈的同名端概念,掌握互感线圈的串联。 5理解电感器的储能特性及在电路中能量的转化规律,了解磁场能量的计算。,教学难点,学时分配,第六章 电磁感应,第一节 电磁感应现象,第二节 感应电流的方向,第三节 电磁感应定律,第四节 自感现象,第五节 互感现象,本章

2、小结,第六节 互感线圈的同名端和串联,第七节 涡流和磁屏蔽,第一节 电磁感应现象,一、磁感应现象,二、磁感应条件,在发现了电流的磁效应后,人们自然想到:既然电能够产生磁,磁能否产生电呢?,由实验可知,当闭合回路中一部分导体在磁场中做切割磁感线运动时,回路中就有电流产生。,一、磁感应现象,当穿过闭合线圈的磁通发生变化时,线圈中有电流产生。 在一定条件下,由磁产生电的现象,称为电磁感应现象,产生的电流叫感应电流。,动画 M6-2 电磁感应(2),动画 M6-3 电磁感应(3),上述几个实验,其实质上是通过不同的方法改变了穿过闭合回路的磁通。因此,产生电磁感应的条件是: 当穿过闭合回路的磁通发生变化

3、时,回路中就有感应电流产生。,二、磁感应条件,第二节 感应电流的方向,一、右手定则,二、楞次定律,三、右手定则与楞次定律的一致性,当闭合回路中一部分导体作切割磁感线运动时,所产生的感应电流方向可用右手定则来判断。,伸开右手,使拇指与四指垂直,并都跟手掌在一个平面内,让磁感线穿入手心,拇指指向导体运动方向,四指所指的即为感应电流的方向。,一、右手定则,二、楞次定律,当磁铁插入线圈时,原磁通在增加,线圈所产生的感应电流的磁场方向总是与原磁场方向相反,即感应电流的磁场总是阻碍原磁通的增加; 当磁铁拔出线圈时,原磁通在减少,线圈所产生的感应电流的磁场方向总是与原磁场方向相同,即感应电流的磁场总是阻碍原

4、磁通的减少。 因此,得出结论: 当将磁铁插入或拔出线圈时,线圈中感应电流所产生的磁场方向,总是阻碍原磁通的变化。这就是楞次定律的内容。 根据楞次定律判断出感应电流磁场方向,然后根据安培定则,即可判断出线圈中的感应电流方向。,1楞次定律,2判断步骤,由于线圈中所产生的感应电流磁场总是阻碍原磁通的变化,即阻碍磁铁与线圈的相对运动,因此,要想保持它们的相对运动,必须有外力来克服阻力做功,并通过做功将其他形式的能转化为电能,即线圈中的电流不是凭空产生的。,感应电流方向,3楞次定律符合能量守恒定律,右手定则和楞次定律都可用来判断感应电流的方向,两种方法本质是相同的,所得的结果也是一致的。,右手定则适用于

5、判断导体切割磁感线的情况,而楞次定律是判断感应电流方向的普遍规律。,三、右手定则与楞次定律的一致性,第三节 电磁感应定律,一、感应电动势,二、电磁感应定律,三、说明,注意:对电源来说,电流流出的一端为电源的正极。,在电源内部,电流从电源负极流向正极,电动势的方向也是由负极指向正极,因此感应电动势的方向与感应电流的方向一致,仍可用右手定则和楞次定律来判断。,一、感应电动势,1感应电动势,电磁感应现象中,闭合回路中产生了感应电流,说明回路中有电动势存在。在电磁感应现象中产生的电动势叫感应电动势。产生感应电动势的那部分导体,就相当于电源,如在磁场中切割磁感线的导体和磁通发生变化的线圈等。,2感应电动

6、势的方向,感应电动势是电源本身的特性,即只要穿过电路的磁通发生变化,电路中就有感应电动势产生,与电路是否闭合无关。 若电路是闭合的,则电路中有感应电流,若外电路是断开的,则电路中就没有感应电流,只有感应电动势。,3感应电动势与电路是否闭合无关,1电磁感应定律,对于N 匝线圈,有,式中N 表示磁通与线圈匝数的乘积,称为磁链用 表示。即,于是,二、电磁感应定律, = N,大量的实验表明: 单匝线圈中产生的感应电动势的大小,与穿过线圈的磁通变化率 / t成正比,即,2直导线在磁场中切割磁感线,如图 6-1 所示,abcd 是一个矩形线圈,它处于磁感应强度为 B 的匀强磁场中,线圈平面和磁场垂直,ab

7、 边可以在线圈平面上自由滑动。设 ab 长为 l,匀速滑动的速度为 v,在 t 时间内,由位置 ab 滑动到 ab ,利用电磁感应定律,ab 中产生的感应电动势大小为,即,图 6-1 导体切割磁感线产生的感应电动势,上式适用于 的情况。 如图 6-2 所示,设速度 v 和磁场 B 之间有一夹角 。将速度 v 分解为两个互相垂直的分量 v 1、 v 2, v 1 = v cos 与 B 平行,不切割磁感线; v 2 = v sin 与 B 垂直,切割磁感线。,图 6-2 B 与 v 不垂直时的感应电动势,上式表明,在磁场中,运动导线产生的感应电动势的大小与磁感应强度 B、导线长度 l、导线运动速

8、度 v 以及运动方向与磁感线方向之间夹角的正弦 sin 成正比。 用右手定则可判断 ab 上感应电流的方向。 若电路闭合,且电阻为 R,则电路中的电流为,因此,导线中产生的感应电动势为,E B l v2 B l v sin,三、说明,1利用公式 计算感应电动势时,若 v 为平均速度,则计算结果为平均感应电动势;若 v 为瞬时速度,则计算结果为瞬时感应电动势。 2利用公式 计算出的结果为 t 时间内感应电动势的平均值。,【例6-1】在图 6-1中,设匀强磁场的磁感应强度 B 为 0.1 T,切割磁感线的导线长度l 为 40 cm,向右运动的速度 v 为 5 m/s,整个线框的电阻 R为 0.5

9、,求: (1)感应电动势的大小; (2)感应电流的大小和方向; (3)使导线向右匀速运动所需的外力; (4)外力做功的功率; (5)感应电流的功率。,解: (1)线圈中的感应电动势为,(2)线圈中的感应电流为,由右手定则可判断出感应电流方向为 abcd 。,(3)由于 ab 中产生了感应电流,电流在磁场中将受到安培力的作用。用左手定则可判断出 ab 所受安培力方向向左,与速度方向相反,因此,若要保证 ab 以速度 v 匀速向右运动,必须施加一个与安培力大小相等,方向相反的外力。所以,外力大小为,外力方向向右。,(4) 外力做功的功率为,(5) 感应电流的功率为,可以看到,P = P,这正是能量

10、守恒定律所要求的。,【例6-2】在一个 B = 0.01 T 的匀强磁场里,放一个面积为 0.001 m2 的线圈,线圈匝数为 500 匝。在 0.1 s 内,把线圈平面从与磁感线平行的位置转过 90,变成与磁感线垂直,求这个过程中感应电动势的平均值。,解: 在0.1 s 时间内,穿过线圈平面的磁通变化量为,感应电动势为,第四节 自感现象,一、自感现象,二、自感系数,三、电感的计算,四、自感电动势,五、自感现象的应用,六、自感的危害,七、磁场能量,当线圈中的电流变化时,线圈本身就产生了感应电动势,这个电动势总是阻碍线圈中电流的变化。这种由于线圈本身电流发生变化而产生电磁感应的现象叫自感现象,简

11、称自感。在自感现象中产生的感应电动势,叫自感电动势。,一、自感现象,考虑自感电动势与线圈中电流变化的定量关系。当电流流过回路时,回路中产生磁通,叫自感磁通,用 L 表示。当线圈匝数为 N 时,线圈的自感磁链为,同一电流流过不同的线圈,产生的磁链不同,为表示各个线圈产生自感磁链的能力,将线圈的自感磁链与电流的比值称为线圈的自感系数,简称电感,用 L 表示,即 L 是一个线圈通过单位电流时所产生的磁链。电感的单位是亨利 (H) 以及毫亨 (mH) 、微亨 (H) ,它们之间的关系为 1 H = 103 mH = 106 H,二、自感系数,L = N L,这里介绍环形螺旋线圈电感的计算方法。 假定环

12、形螺旋线圈均匀地绕在某种材料做成的圆环上,线圈的匝数为 N ,圆环的平均周长为 l ,对于这样的线圈,可近似认为磁通都集中在线圈的内部,而且磁通在截面 S 上的分布是均匀的。当线圈通过电流I时,线圈内的磁感应强度 B 与磁通分别 为,由 N = LI 可得,三、电感的计算,说明:,(1) 线圈的电感是由线圈本身的特性所决定的,它与线圈的尺寸、匝数和媒介质的磁导率有关,而与线圈中有无电流及电流的大小无关。,(2) 其他近似环形的线圈,在铁心没有饱和的条件下,也可用上式近似计算线圈的电感,此时l是铁心的平均长度;若线圈不闭合,不能用上式计算。,(3) 由于磁导率 不是常数,随电流而变,因此有铁心的

13、线圈其电感也不是一个定值,这种电感称为非线性电感。,自感电动势的大小与线圈中电流的变化率成正比。当线圈中的电流在 1s 内变化 1A 时,引起的自感电动势是 1V,则这个线圈的自感系数就是 1H 。,四、自感电动势,自感现象在各种电气设备和无线电技术中有着广泛的应用。荧光灯的镇流器就是利用线圈自感的一个例子。如图 6-3 是荧光灯的电路图。,五、自感现象的应用,图 6-3 荧光灯电路图,荧光灯主要由灯管、镇流器和启辉器组成。镇流器是一个带铁心的线圈,启辉器的结构如图 6-4 所示。,1结构,图 6-4 启辉器结构图,启辉器是一个充有氖气的小玻璃泡,里面装有两个电极,一个固定不动的静触片和一个用

14、双金属片制成的 U 形触片,灯管内充有稀薄的汞蒸气,当汞蒸气导电时,就发出紫外线,使涂在管壁上的荧光粉发出柔和的光。由于激发汞蒸气导电所需的电压比 220 V 的电源电压高得多,因此荧光灯在开始点亮之前需要一个高出电源电压很多的瞬时电压。在荧光灯正常发光时,灯管的电阻很小,只允许通过不大的电流,这时又要使加在灯管上的电压大大低于电源电压。这两方面的要求都是利用跟灯管串联的镇流器来达到的。,2工作原理,当开关闭合后,电源把电压加在起动器的两极之间,使氖气放电而发出辉光,辉光产生的热量使U形片膨胀伸长,跟静触片接触而使电路接通,于是镇流器的线圈和灯管的灯丝中就有电流通过。,电流接通后,启辉器中的氖

15、气停止放电,U形触片冷却收缩,两个触片分离,电路自动断开。在电路突然断开的瞬间,镇流器的两端产生一个瞬时高压,这个电压和电源电压都加在灯管两端,使灯管中的汞蒸气开始导电,于是荧光灯管成为电流的通路开始发光。在荧光灯正常发光时,与灯管串联的镇流器就起着降压限流的作用,保证荧光灯的正常工作。,自感现象也有不利的一面。在自感系数很大而电流又很强的电路中,在切断电源瞬间,由于电流在很短的时间内发生了很大变化,会产生很高的自感电动势,在断开处形成电弧,这不仅会烧坏开关,甚至会危及工作人员的安全。因此,切断这类电源必须采用特制的安全开关。,六、自感的危害,电感线圈也是一个储能元件。经过高等数学推导,线圈中

16、储存的磁场能量为,当线圈中通有电流时,线圈中就要储存磁场能量,通过线圈的电流越大,储存的能量就越多;在通有相同电流的线圈中,电感越大的线圈,储存的能量越多,因此线圈的电感也反映了它储存磁场能量的能力。,七、磁场能量,与电场能量相比,磁场能量和电场能量有许多相同的特点:,(1) 磁场能量和电场能量在电路中的转化都是可逆的。例如,随着电流的增大,线圈的磁场增强,储入的磁场能量增多;随着电流的减小,磁场减弱,磁场能量通过电磁感应的作用,又转化为电能。因此,线圈和电容器一样是储能元件,而不是电阻类的耗能元件。,(2) 磁场能量的计算公式,在形式上与电场能量的计算公式相同。,第五节 互感现象,一、互感现象,二、互感系数,三、耦合系数,四、互感电动势,由于一个线圈的电流变化,导致另一个线圈产生感应电动势的现象,称为互感现象。在互感现象中产生的感应电动势,叫互感电动势。,一、互感现象,如图 6-5 所示,N1、N2 分别

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号