离心泵原理及应用剖析

上传人:今*** 文档编号:106867723 上传时间:2019-10-16 格式:PPT 页数:45 大小:4.11MB
返回 下载 相关 举报
离心泵原理及应用剖析_第1页
第1页 / 共45页
离心泵原理及应用剖析_第2页
第2页 / 共45页
离心泵原理及应用剖析_第3页
第3页 / 共45页
离心泵原理及应用剖析_第4页
第4页 / 共45页
离心泵原理及应用剖析_第5页
第5页 / 共45页
点击查看更多>>
资源描述

《离心泵原理及应用剖析》由会员分享,可在线阅读,更多相关《离心泵原理及应用剖析(45页珍藏版)》请在金锄头文库上搜索。

1、离心泵原理及应用,离心泵原理及应用,离心泵工作原理 离心泵主要工作参数 离心泵的结构 离心泵的操作 离心泵故障及消除措施,1. 离心泵工作原理,1.1 离心泵工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。 在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。,1. 离心泵工作原理,1.2 离心泵工作流程:,1. 离心泵工作原理,

2、1.3 离心泵工作动画演示,1. 离心泵工作原理,1.4 离心泵的气缚 当离心泵在启动前如不充满液体,则泵内就会积存空气。由于空气的空气的密度比液体小的多,气体在泵内产生的离心现象比液体要轻微的很多,使得叶轮中心处真空度很低,贮罐内的液面与泵入口处的压强差很小,无法将液体送入叶轮内形成吸液。,1. 离心泵工作原理,1.5 离心泵的气蚀 1.5.1 汽蚀发生的机理 离心泵运转时,流体的压力随着从泵入口到叶轮入口而下降,在叶片附近,液体压力最低。此后,由于叶轮对液体做功,压力很快上升。当叶轮叶片入口附近压力小于等于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,还可能有溶解在液体内的气体溢出,它

3、们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡会凝结溃灭形成空穴。瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然剧增(有的可达数百个大气压)。 这不仅阻碍流体的正常流动,更为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数小弹头一样,连续地打击金属表面,其撞击频率很高(有的可达20003000Hz),金属表面会因冲击疲劳而剥裂。若汽泡内夹杂某些活性气体(如氧气等),他们借助汽泡凝结时放出的能量(局部温度可达200300),还会形成热电偶并产生电解,对金属起电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体

4、汽化、凝结、冲击,形成高压、高温、高频率的冲击载荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为汽蚀。,1. 离心泵工作原理,1.5.2 汽蚀的后果 汽蚀使过流部件被剥蚀破坏 通常离心泵受汽蚀破坏的部位,先在叶片入口附近,继而延至叶轮出口。起初是金属表面出现麻点,继而表面呈现槽沟状、蜂窝状、鱼鳞状的裂痕,严重时造成叶片或叶轮前后盖板穿孔,甚至叶轮破裂,造成严重事故。因而汽蚀严重影响到泵的安全运行和使用寿命。 汽蚀使泵的性能下降 汽蚀使叶轮和流体之间的能量转换遭到严重的干扰,使泵的性能下降,严重时会使液流中断无法工作。,1. 离心泵工作原理,1.5.2 汽蚀的后果 汽蚀使泵产生噪音和振动

5、 气泡溃灭时,液体互相撞击并撞击壁面,会产生各种频率的噪音。严重时可以听到泵内有“噼啪”的爆炸声,同时引起机组的振动。而机组的振动又进一步足使更多的汽泡产生和溃灭,如此互相激励,导致强烈的汽蚀共振,致使机组不得不停机,否则会遭到破坏。,1. 离心泵工作原理,1.5.3 离心泵产生汽蚀的原因 1、被输送的介质温度过高; 2、水池液位过低,有气体被吸入; 3、泵的安装高度过高; 4、流速和吸入管路上的阻力太大; 5、吸入管道、压兰(指不带液封的)密封不好,有空气进入。 6、流量过大,也就是说出口阀门开的太大,1. 离心泵工作原理,1.5.4 气蚀的解决方案 1.清理进口管路的异物使进口畅通,或者增

6、加管径 的大小; 2.降低输送介质的温度; 3.降低安装高度; 4.重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等; 5.使泵体内灌满液体或者在进口增加一缓冲罐就可以解决,1. 离心泵工作原理,1.6 液体性质对离心泵性能的影响 1.液体粘度对泵性能的影响:粘度增加,油品的粘滞力和阻滞作用也增大,流体在叶轮通道中流速下降,泵的流量和扬程随粘度的增大而下降。 2.饱和蒸汽压对泵的影响:当液体的温度升高,液体的饱和蒸汽压随之升高,当泵的入口压力一定时液体容易汽化使泵的效率下降,严重时产生汽蚀现象。 3.固体颗粒浓度对泵的影响:固体颗粒的浓度增大泵的扬程和流量及效率均下降,严重时对泵的

7、各部件冲蚀严重。,2. 离心泵主要工作参数:,流量 Q 扬程 H 转速 n 功率 N 效率 气蚀余量(hr),2. 离心泵主要工作参数:,2.1 流量 即泵在单位时间内排出的液体量,通常用体积单位表示,符号Q,单位有m3/h,m3/s,l/s等, 体积流量Q : m3/h m3/s L/s 质量流量m : kg/h kg/s t/h m=Q 液体密度kg/m3。,用的较多,2. 离心泵主要工作参数:,2.2 扬程 输送单位重量的液体从泵入口处(泵进口法兰)到泵出口处 (泵出口法兰),其能量的增值。 常用H表示,单位J/kg、m液柱。 (J=Nm),2. 离心泵主要工作参数:, 提高位高; 克服

8、阻力; 增加液体静压能和速度能,H是液体获得的能量,不是简单的排送高度!,H,由能量方程可以看出,m (1-1),2. 离心泵主要工作参数:,2.3 转速 泵的转速是泵每分钟旋转的次数,用n来表示。 单位:rpm,或r/s 一般离心泵转速970 rpm、1450 rpm、2950 rpm; 高速离心泵的转速可达 20000 rpm以上。,2. 离心泵主要工作参数:,2.4 功率 单位时间内所做的功。 单位: 工程单位:1 kW=1000 W 有效功率Ne 单位时间内泵输送出去的液体有效能头。 KW 轴功率N: 泵轴输入的功率。,2. 离心泵主要工作参数:,2.5 效率 用表示,是衡量泵的经济性

9、的指标。 N:泵输入功率 (轴功率) Ne:液体得到功率(有效功率) 两者的差别在于损失,包括流动损失、泄漏、机械摩擦等。,2. 离心泵主要工作参数:,2.6 汽蚀余量 离心泵的汽蚀余量是表示泵的性能的主要参数,用符号hr表示,单位为米液柱。 有效汽蚀余量 液体流自吸液罐,经吸入管路到达泵吸入口后,所富余的高出汽化压力的那部分能头。用ha表示。 泵的必须汽蚀余量 液流从泵入口到叶轮内最低压力点K处的全部能量损失,用hr表示。,2. 离心泵主要工作参数:,2.6 汽蚀余量 hr与ha的区别和联系: hahr 泵不汽蚀 ha=hr 泵开始汽蚀 hahr 泵严重汽蚀,3. 离心泵结构,叶轮 泵体 泵

10、盖 泵轴 轴封 轴承箱 轴承 甩油环 轴承盖 挡水圈 附属组件,3. 离心泵结构,3. 离心泵结构,3. 离心泵结构,3.1 叶轮 它是离心泵内传递能量给液体的唯一元件,叶轮用键固定于轴上,随轴由原动机带动旋转,通过叶片把原动机的能量传给液体。 叶轮的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。,3. 离心泵结构,3.1 叶轮 叶轮有开式、半闭式和闭式三种,如图所示。 开式叶轮在叶片两侧无盖板,制造简单、清洗方便,适用于输送含有较大量悬浮物的物料,效率较低,输送的液体压力不高;半闭式叶轮在吸入口一侧无盖板,而在另一侧有盖板,适用于输送易沉淀或含有颗粒的物料,

11、效率也较低;闭式叶轮在叶轮在叶片两侧有前后盖板,效率高,适用于输送不含杂质的清洁液体。一般的离心泵叶轮多为此类。,3. 离心泵结构,3.2 泵体 即泵的壳体,包括吸入室和压液室。 吸入室 : 它的作用是使液体均匀地流进叶轮。 压液室 : 它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。压液室有蜗壳和导叶两种形式。,3. 离心泵结构,3.3 轴 轴是传递机械能的重要零件,原动机的扭矩通过它传给叶轮。泵轴是泵转子的主要零件,轴上装有叶轮、轴套、平衡盘等零件。泵轴靠两端轴承支承,在泵中作高速回转,因而泵轴要承载能力大、耐磨、耐腐蚀。泵轴的材料一般选

12、用碳素钢或合金钢并经调质处理。,3. 离心泵结构,3.4 轴封 由于泵轴转动而泵壳固定不动,在轴和泵壳的接触处必然有一定间隙。为避免泵内高压液体沿间隙漏出,或防止外界空气从相反方向进入泵内,必须设置轴封装置。 轴封装置主要防止泵中的液体泄漏和空气进入泵中,以达到密封和防止进气引起泵气蚀的目的。 轴封的形式:即带有骨架的橡胶密封、填料密封和机械密封。目前最主要采用机械密封和干气密封两种形式。,3. 离心泵结构,3.5 机械密封 3.5.1 机械密封的工作原理 机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力作用下保持贴合并配以辅助密封而达到阻漏的轴封装置。,3. 离心泵结

13、构,3.5.2 机械密封的工作原理 常用机械密封结构如图所示。由1、静止环(静环)2、旋转环(动环)3、弹性元件4、弹簧座5、紧定螺钉6、旋转环辅助密封圈7、静止环辅助密封圈等元件组成,防转销7固定在压盖9上以防止静止环转动。旋转环和静止环往往还可根据它们是否具有轴向补偿能力而称为补偿环或非补偿还。,3. 离心泵结构,3.5.3 机械密封泄漏途径 机械密封中流体可能泄漏的途径有A、B、C、D四个通道。 C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B通道是旋转环与轴之间的密封,静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈。 A通道则是旋转环与静止环的端面彼此贴合作

14、相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。,3. 离心泵结构,3.5.4 机械密封要求 机械密封对密封端面的加工要求很高,同时为了使密封端面间保持必要的润滑液膜,必须严格控制端面上的单位面积压力,压力过大,不易形成稳定的润滑液膜,会加速端面的磨损;压力过小,泄漏量增加。所以,要获得良好的密封性能又有足够寿命,在设计和安装机械密封时,一定要保证端面单位面积压力值在最适当的范围。,3. 离心泵结构,3.5 轴承箱 3.5.1 轴承箱作用 轴承的作用是对泵轴进行支撑,实质是能够承担径向载荷。也可以理解为它是用来固定轴的,使轴只能实现转动,而控制其轴向和径向的移动

15、。 轴承箱则用来固定轴承,同时作为装载轴承润滑油的容器。,3. 离心泵结构,3.5.2 轴承润滑 离心泵大部分采用滚动轴承,而滚动轴承的元件(滚动体、内外圈滚道及保持器)之间并非都是纯滚动的。由于在外负荷作用下零件产生弹性变形,除个别点外,接触面上均有相对滑动。滚动轴承各元件接触面积小,单位面积压力往往很大,如果润滑不良,元件很容易胶合,或因摩擦升温过高,引起滚动体回火,使轴承失效,所以轴承时刻都要处于油膜的涂覆之中。 轴承润滑通常用油槽或油雾进行润滑,为了保证滚动体和滚道接触面间形成一定厚度的油膜,采用长城威越L-TSA 46汽轮机油。在油槽润滑中,轴承部分浸在油中,油浸润滑高度以没过轴承底

16、的50为宜。如果超过50,过量的油涡流会使油温上升,油温升高会加速润滑油的氧化,从而降低润滑性能;如果低于50,则油对轴承的冲洗作用降低,润滑效果不好。,3. 离心泵结构,3.5.3 滚动轴承的浸油润滑 N3000rpm时,油位在轴承最下部滚动体中心以下,但不低于滚动体下缘。 N15003000rpm时,油位在轴承最下部滚动体中心以上,但不得浸没滚动体上缘。 N1500rpm时,油位在轴承最下部滚动体的上缘或浸没滚动体。,3. 离心泵结构,3.5.4 恒位油杯原理 恒位油杯的作用是使轴承箱体内的润滑油位保持恒定。 恒位油杯的结构简图如右所示,斜面的位置对恒位油杯非常关键,由此形成的工作油位点是正常工作状态时的油位。有的恒位油杯没有专门的气孔,但都要保证斜面以上部位与大气自由相通。,3. 离心泵结构,3.5.4 恒位油杯原理 下图为恒位油杯正常工作状态,理论设计上工作油位点和设计油位是相同的,恒位油杯内初始油量一般保持在整个油杯的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号