【2017年整理】一点接地和多点接地

上传人:豆浆 文档编号:1063270 上传时间:2017-05-26 格式:DOCX 页数:7 大小:36.19KB
返回 下载 相关 举报
【2017年整理】一点接地和多点接地_第1页
第1页 / 共7页
【2017年整理】一点接地和多点接地_第2页
第2页 / 共7页
【2017年整理】一点接地和多点接地_第3页
第3页 / 共7页
【2017年整理】一点接地和多点接地_第4页
第4页 / 共7页
【2017年整理】一点接地和多点接地_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《【2017年整理】一点接地和多点接地》由会员分享,可在线阅读,更多相关《【2017年整理】一点接地和多点接地(7页珍藏版)》请在金锄头文库上搜索。

1、单点接地 多点接地单点地要解决的问题就是针对“公共地阻抗耦合”和“低频地环路”,多点地是针对“高频所容易通过长地走线产生的共模干扰”.低频电路中,信号的工作频率小于 1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于 10MHz 时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在 110MHz 时,如果采用一点接地,其地线长度不应超过波长的 1/20,否则应采用多点接地法。数字地与模拟地之间单点接地,数字地之内多点接。地线干扰与地线设计地线设计是电磁兼容设计中大家都很注意,却又不知道应该怎样去做的一个

2、问题。了解了地线造成干扰问题的机理之后,在设计和实施地线时就有了一个明确的思路。本期从介绍地线造成干扰的原理入手,使读者了解设计地线的关键和原则。 1 什么是地线?地线有安全地和信号地两种。前者是为了保证人身安全、设备安全而设置的地线,后者是为了保证电路正确工作所设置的地线。造成电路干扰现象的主要是信号地,因此这里仅讨论信号地的问题。信号地的一般定义是:电路的电位参考点。更恰当地说,这个定义是我们设计电路时的一个假设。从这个定义是无法分析和理解一些地线干扰问题的。从现在开始,我们在分析电磁兼容问题时,使用下面的定义。地线是信号电流流回信号源的地阻抗路径。既然地线是电流的一个路径,那么根据欧姆定

3、律,地线上是有电压的;既然地线上有电压,说明地线不是一个等电位体。这样,我们在设计电路时,关于地线电位一定的假设就不再成立,因此电路会出现各种错误。这就是地线干扰的实质。2 地线的阻抗有多大?一个难以理解的问题是,我们在设计地线时,都使地线的电阻很小,那么地线上的电位差怎么会大到导致电路出错的程度。理解这个问题,要理解地线阻抗的组成。地线的阻抗 Z 由电阻部分和感抗部分两部分组成,即:Z = RAC + jL。电阻成分:导体的电阻分为直流电阻 RDC 和交流电阻 RAC。对于交流电流,由于趋肤效应,电流集中在导体的表面,导致实际电流截面减小,电阻增加,直流电阻和交流电阻的关系如下:RAC= 0

4、.076rf1/2RDC式中:r= 导线的半径,单位 cm,f=流过导线的电流频率,单位 Hz, RDC= 导线的直流电阻,单位 。电感成分:任何导体都有内电感(这区别于通常讲的外电感,外电感是导体所包围的面积的函数),内电感与导体所包围的面积无关。对于圆截面导体如下:L=0.2Sln(4.5/d) -1 (H)式中 S=导体长度(m),d=导体直径(m)表 1 说明了直流电阻与交流阻抗的巨大差异。频率很低时的阻抗可以认为是导体的电阻,从表中可以看出,随着频率升高,阻抗增加很快,当频率达到 100MHz 以上时,直径 6.5mm 长度仅为 10cm 的导线也有数十欧姆的阻抗。3 地环路干扰及对

5、策地环路干扰是一种较常见的干扰现象,常常发生在通过较长电缆连接的相距较远的设备之间。其产生的内在原因是设备之间的地线电位差。地线电压导致了地环路电流,由于电路的非平衡性,地环路电流导致对电路造成影响的差模干扰电压(图 1)。由于地环路干扰是由地环路电流导致的,因此在实践中,有时会发现,当将一个设备的地线断开时,干扰现象消失,这是因为地线断开时,切断了地环路。这种现象往往发生在干扰频率较低的场合,当干扰频率高时,短开地线与否关系不大。地环路干扰形成的原因 1:两个设备的地电位不同,形成地电压,在这个电压的驱动下,“ 设备 1-互联电缆-设备 2- 地”形成的环路之间有电流流动。由于电路的不平衡性

6、,每根导线上的电流不同,因此会产生差模电压,对电路造成干扰。地线上的电压是由于其他功率较大的设备也用这段地线,在地线中引起较强电流,而地线又有较大阻抗产生的。地环路干扰形成的原因 2:由于互联设备处在较强的电磁场中,电磁场在 “设备 1 - 互联电缆 - 设备 2 - 地”形成的环路中感应出环路电流,与原因 1 的过程一样导致干扰。解决地环路干扰的方法:解决地环路干扰的基本思路有三个:一个是减小地线的阻抗,从而减小干扰电压,但是这对第二种原因导致的地环路没有效果。另一个是增加地环路的阻抗,从而减小地环路电流。当阻抗无限大时,实际是将地环路切断,即消除了地环路。例如将一端的设备浮地、或将线路板与

7、机箱断开等是直接的方法。但出于静电防护或安全的考虑,这种直接的方法在实践中往往是不允许的。更实用的方法是使用隔离变压器、光耦合器件、共模扼流圈、平衡电路等方法。第三个方法是改变接地结构,将一个机箱的地线连接到另一个机箱上,通过另一个机箱接地,这就是单点接地的概念。4 公共阻抗耦合及对策当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合,如图 2(a) 所示。一个电路的地电位会受到另一个电路工作状态的影响,即一个电路的地电位受另一个电路的地电流的调制,另一个电路的信号就耦合进了前一个电路。放大器级间公共地线耦合问题:图 2(a) 中的放大器,由于前置放大电路与功率放大电路共用一段地线,功

8、率放大电路的地线电流很大,因此在地线上产生了较大的地线电压 V。这个电压正好在前置放大电路的输入回路中,如果满足一定的相位关系,就形成了正反馈,造成放大器自激。解决办法:可以有两个解决办法,一个是将电源的位置改变一下,使它*近功率放大电路,这样,就不会有较大的地线电压落在前置放大电路的输入回路中了,如图 2 (b) 所示。另一个办法是功率放大电路单独通过一根地线连接到电源,这实际是改成了并联单点接地结构,如图 2 (d) 所示。5 接地策略信号地有图 3 所示的几种方式。单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。最大好处是没有地环路,相对简单。但地线

9、往往过长,导致地线阻抗过大。多点接地:所有电路的地线就近接地,地线很短,适合高频接地。问题是存在地环路。混合接地:在地线系统内使用电感、电容连接,利用电感、电容器件在不同频率下有不同阻抗的特性,使地线系统在不同的频率具有不同的接地结构。串联单点接地容易产生公共阻抗耦合的问题,解决的方法是采用并联单点接地。但是并联单点接地往往由于地线过多,而没有可实现性。因此,灵活的方案是,将电路按照信号特性分组,相互不会产生干扰的电路放在一组,一组内的电路采用串联单点接地,不同组的电路采用并联单点接地。如图 4 所示。这样,既解决了公共阻抗耦合的问题,又避免了地线过多的问题。接地的方法很多,具体使用那一种方法

10、取决于系统的结构和功能。“接地”的概念首次应用在电话的设计开发中。从 1881 年初开始采用单根电缆为信号通道,大地为公共回路。这就是第一个接地问题。但是用大地作为信号回路会导致地回路中的过量噪声和大气干扰。为了解决这个问题,增加了信号回路线。现在存在的许多接地方法都是来源于过去成功的经验,这些方法包括:1) 单点接地:如图 1 所示,单点接地是为许多在一起的电路提供公共电位参考点的方法,这样信号就可以在不同的电路之间传输。若没有公共参考点,就会出现错误信号传输。单点接地要求每个电路只接地一次,并且接在同一点。该点常常一地球为参考。由于只存在一个参考点,因此可以相信没有地回路存在,因而也就没有

11、干扰问题。2) 多点接地:如图 2 所示,从图中可以看出,设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考点。这种接地结构能够提供较低的接地阻抗,这是因为多点接地时,每条地线可以很短;并且多根导线并联能够降低接地导体的总电感。在高频电路中必须使用多点接地,并且要求每根接地线的长度小于信号波长的 1/20。3) 混合接地:混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用图 3 所示的混合接地。对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。当许多相互连接的设备体积很大(设备的

12、物理尺寸和连接电缆与任何存在的干扰信号的波长相比很大)时,就存在通过机壳和电缆的作用产生干扰的可能性。当发生这种情况时,干扰电流的路径通常存在于系统的地回路中。在考虑接地问题时,要考虑两个方面的问题,一个是系统的自兼容问题,另一个是外部干扰耦合进地回路,导致系统的错误工作。由于外部干扰常常是随机的,因此解决起来往往更难。接地要求 要求接地的理由很多,下面列出几种:1) 安全接地:使用交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会导致电击伤害。2) 雷电接地:设施的雷电保护系统是一个独立的系统,由避雷针、下导体和与接地系统相连的接头组成。该接地系统通常与

13、用做电源参考地及黄绿色安全地线的接地是共用的。雷电放电接地仅对设施而言,设备没有这个要求。3) 电磁兼容接地:出于电磁兼容设计而要求的接地,包括:* 屏蔽接地:为了防止电路之间由于寄生电容存在产生相互干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。* 滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。* 噪声和干扰抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“最低阻抗”通道。* 电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个

14、公共电位参考点就是地。因此所有互相连接的电路必须接地。以上所有理由形成了接地的综合要求。但是,一般在设计要求时仅明确安全和雷电防护接地的要求,其它均隐含在用户对系统或设备的电磁兼容要求中。返回目录接地技术应用 目前所应用的接地技术和方法可以说是过去解决问题的经验总结。典型的接地要求往往限制在所谓的“单点接地” 上。通常在电路这一级上不专门提出对接地的具体要求,因为在这一层次上提出具体要求是不合适的。对数字电路而言,大多数逻辑芯片读采用单端电路的方式工作。也就是说,所有信号的电位以电源回路为参考的话,其电位是 0V。在模拟电路中,情况也类似。当元器件之间的距离很近时,要完成逻辑信号的产生、处理和

15、波形整形是很容易的,但如果传输线过长或者参考点电位不正确的话,都会产生问题。我们要建立这样的概念:接地并不是每个部分或每个系统都需要的,比如单块的线路板并不非要接地才能正常工作。当设备之间要传输数据时,接地就是十分必要的了七、 接地接地分安全接地、工作接地,这里所谈的是工作接地,设计接地点就是要尽可能减少各支路电流之间的相互耦合干扰,主要方法有:单点接地、串联接地、平面接地。在电子设备中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:1 正确选择单点接地

16、与多点接地在低频电路中,信号的工作频率小于 1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于 10MHz 时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。高频电路宜采用多点串联接地,地线应短而租,高频元件周围尽量用栅格状大面积地箔。当工作频率在 110MHz 时,如果采用一点接地,其地线长度不应超过波长的 1/20,否则应采用多点接地法。2将数字电路与模拟电路分开电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。要尽量加大线性电路的接地面积。3 尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。因此应将接地线尽量加粗。4 将接地线构成闭环路设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭环路可以明显的提高抗噪声能力。其原因在于:印制电路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地线粗细的限

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号