文档详情

高等数学(数一)知识重点及复习计划 (1)(1).

今***
实名认证
店铺
DOC
125.50KB
约11页
文档ID:105625008
高等数学(数一)知识重点及复习计划 (1)(1)._第1页
1/11

高等数学(数一)知识重点及复习计划按照同济大学高等数学第六版制定第一章 函数与极限 (时间1周,每天2-3小时)章节复习知识点及作业大纲要求1.1函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.注:一、集合 二、映射 P17-20双曲函数 (不用看)习题1-1:4,5,8,9,15,161.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.   2.了解函数的有界性、单调性、周期性和奇偶性.  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.   6.掌握极限的性质及四则运算法则.  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.1.2数列极限的定义,数列极限的性质(唯一性、有界性、保号性 ) 注:用定义证明极限不用看习题1-2:1,4,5,6注:记住4,5,6的结论,不用证明1.3函数极限的定义与基本性质(极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)注:用定义证明极限不用看 习题1-3:1,2,41.4无穷小与无穷大的定义,它们之间的关系,以及与极限的关系 习题1-4:4,6,71.5极限的运算法则(6个定理以及一些推论)习题1-5:1,2,3,4,51.6重点两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼准则求极限,求递归数列的极限. 习题1-6:1,2,41.7重点无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法.习题1-7:1,2,3,41.8重点函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。

习题1-8:2,3,4,51.9连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)习题1-9:3,4,5,61.10重点理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).注:P72一致连续性 (不用看)习题1-10:1,2,5总复习题一:1,2,3,4,5,9,10,11,12第二章 导数与微分(时间1周,每天2-3小时)2.1导数的定义、几何意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方程. 习题2-1:6,7,9,11,14,15,16,17,18,19,201.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.2.2重点复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法.习题2-2:2,3,5,7,8,10,11,142.3重点高阶导数求法(归纳法,分解法,用莱布尼兹法则)习题2-3:2,3,10,11,122.4重点由参数方程确定的函数的求导法,隐函数的求导法,相关变化率 习题2-4:,1-112.5函数微分的定义,微分的几何意义,微分运算法则 注:P119 微分在近似计算中的应用(不用看)习题2-5:2,3,4总复习题二:1,2,3,5,6,7,8,9,10,11,12,13,14第三章 微分中值定理与导数的应用(时间1周,每天2-3小时)3.1重点微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义)习题3-1:5-121.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 2.掌握用洛必达法则求未定式极限的方法. 3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 5.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.3.2重点洛比达法则及其应用 习题3-2:1-43.3重点泰勒中值定理,麦克劳林展开式习题3-3:1-7,103.4重点求函数的单调性、凹凸性区间、极值点、拐点、渐进线(选择题及大题常考)习题3-4:1,2,4,5,8,9, 12,13,14,153.5重点函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题 习题3-5:1,4,5,6,73.6简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握. 习题3-6:2,43.7弧微分,曲率的概念,曲率圆与曲率半径习题3-7:1-5总复习题三:1,2,4,6,7,8,10,11,12,20第四章 不定积分(时间1周,每天2-3小时)4.1原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性 习题4-1:1,71.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分.4.2重点换元积分法 习题4-2全部4.3重点分部积分法 习题4-3全部4.4有理函数的积分 习题4-4 全部 4.5积分表的使用(不用看)总习题四全部第五章 定积分(时间1周,每天2-3小时)5.1定积分的概念与性质(可积存在定理)(定积分的7个性质) 注:P228定积分的近似计算(不考)习题5-1:4,10,131.理解定积分的概念.2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理, 3.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.4.掌握换元积分法与分部积分法.5.了解广义反常积分的概念,会计算广义反常积分.5.2重点微积分的基本公式 积分上限函数及其导数 牛顿-莱布尼兹公式习题5-2:1-125.3重点定积分的换元法与分部积分法习题5-3:1,2,3,4,6,75.4反常积分 无界函数反常积分与无穷限反常积分习题:5-4:1-35.5反常积分的审敛法(不考) 总复习题五:1,3,4,5,6,7,10,13第六章 定积分的应用(时间1周,每天2-3小时)6.1定积分元素法会用定积分计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等6.2重点定积分的几何应用(求平面曲线的弧长,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转曲面的面积) 习题6-2:1,2,3,4,5,6,7,8,9,11,12,13,15,16,21,226.3定积分在物理学上的应用(变力沿直线所做的功,水压力,引力) 习题6-3:1-12总复习题六:1-6第七章 微分方程(时间1周,每天2-3小时)7.1微分方程的基本概念(微分方程及其阶、解、通解、初始条件和特解)习题7-1:1,2,3,4,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会解二阶可降解的微分方程.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.7.2重点可分离变量的微分方程(可分离变量的微分方程的概念及其解法 ) 习题7-2:1,27.3重点齐次方程(一阶齐次微分方程的形式及其解法)习题7-3:1,27.4重点一阶线性微分方程,伯努利方程习题7—4:1,2 7.5重点可降阶的高阶微分方程习题7-5:1,2 7.6重点高阶线性微分方程(微分方程的特解、通解)习题7-6:1-47.7重点常系数齐次线性微分方程(特征方程,微分方程通解中对应项)习题7-7:1,27.8重点常系数非齐次线性微分方程(会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程)习题7-8:1,27.9欧拉方程 习题7-9总复习题七:3,4,5,7,10第八章 空间解析几何与向量代数(时间1周,每天2-3小时)8.1向量及其线性运算习题8-1: 1-191.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程. 8.2数。

下载提示
相似文档
正为您匹配相似的精品文档