高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)

上传人:E**** 文档编号:105469427 上传时间:2019-10-12 格式:PDF 页数:14 大小:2.18MB
返回 下载 相关 举报
高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)_第1页
第1页 / 共14页
高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)_第2页
第2页 / 共14页
高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)_第3页
第3页 / 共14页
高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)_第4页
第4页 / 共14页
高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)》由会员分享,可在线阅读,更多相关《高级堆叠封装集成-课件21. panel level fan-out technologies 2.1d-)(14页珍藏版)》请在金锄头文库上搜索。

1、I C P l a t f o r m A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark Fan-Out WLP technology emerging on both 200mm/300mm infrastructures Infineon eWLB: the first FO-WLP wafers are mass produced at Infineon, STATS ChipPAC and ASE since 2009. Other OSATsuch as SPIL, Amkor, UTA

2、C, ACET, NANIUM, etc. are ramping Embedded die package technology to expand fast from niche to high volume markets Cost effective, small form factor, small electrical overhead, low and high density capable FOWLP vs. chip embedding: Competing technologies and infrastructures? Today, embedded die and

3、Fan-Out WLP technologies are not competing: The chip embedding technology is looking for re-placement of low cost, low pin-counts WLCSP/SOT/QFN/LGA family package applications; while FOWLP technology is rather targeting the direct replacement of higher I/Os ( 120 pins) BGA package applications Howev

4、er, in the long term, with standardization and through further technology improvements towards higher yield, fan-out WLP and embedded die technology could seriously compete in the fast growing 3D packaging market space as they will both enable the construction of ever more complex, larger SiP module

5、s cost effectively So, fan-out WLP and chip embedding into PCB laminates are just two additional key pieces of the widening tool-box for 3D packaging! I C P l a t f o r m A bump-less, wire bond-less, “substrate-less” package. It is a package with die embedded in substrate/mold/metal. Advantage SFF M

6、ulti-die integration compatible 3 Could be PP (+ Cu foil), or ABF-like material, or metal plate Die Could be PP, or ABF-like materialABF-like material I C P l a t f o r m Low-cost wafer level fan-out package structure based on the use of a metal plate with a die attached Redistribution layer is base

7、d on PCB technology Process flow: Die mounting on Cu base Embedded die in resin Via formation Seed layer formation Photoresist coating Patterning Metal plating Resist removal Seed layer etching Solder resist layer formation Solder ball attach (panel level) Singulation by saw Source: J-Devices. I C P

8、 l a t f o r m 5 4 7 mm 4 7 mm DC-DC convertor Required wafer RDL Line / space = 20/20 30/30 um Laser via / land = 70/130 um PMIC (power management IC) Required wafer RDL Same design rule as left 4 7 mm 4 7 mm Cu plate I C P l a t f o r m 6 I C P l a t f o r m I C P l a t f o r m Panel Size: 510 x 4

9、10 mm (209,100mm2) Strip Size: 240 x 76.2 mm (X2L) PKG Size: 6.28 x 4.68 mm Strip Array: 34x13 = 442 each Pkg/Per/Panel : 4,420 each Wafer size : 300mm(70,686mm2) Unit(die) size : 6.28X4.68mm Die/Per/Wafer: 2,130 each FC Cu Pillar aS3-Plus Panel vs Wafer Utilization 3:1 Area No Wafer Fab investment

10、needed, ASE uses standard FlipChip Packaging 2:1 Pkgs Source: ASE. I C P l a t f o r m Yole I C P l a t f o r m Wafer Level Fan Out Panel Level Fan Out Copper Pillar FCCSP Cu Column Via - C2iM Chip first/lastChip first/midChip lastChip last Interconnection: Via interconnect Interconnection: Via inte

11、rconnect Interconnection: Flip chip bond Interconnection: Flip chip bond 12” wafer18”x24” panel20”x20” panel21”x24” panel Wafer Fab-likePCB-likePCB-likePCB-like Pros: Fine Line/ Space Thin package Pros: Batch process Capacity Pros: Capacity Die savings Thermal Pros: Capacity Die savings Thermal, thi

12、n Cons: Capacity Yield Cons: Yield Cons: Substrate thickness Thermal Cons: Thin substrate handle I C P l a t f o r m 11 Die-firstDie-middleDie-Last DescriptionDie placement first, then RDLs 1stlayer RDL first, followed by die placement and molding, then subsequent RDLs Cu-pillar FCBGA; Cu-pillar + E

13、PP; standard FCBGA. Standard substrate and assembly process flow Pros-Simplest structure -Simplest process -Lowest process cost - Better registration - Better fine line capability for 1stRDL - Lower die loss - Conventional and mature - Minimum die loss Cons- Worse registration - Limited fine line ca

14、pability for 1stRDL - High die loss -Complex process -Higher process cost - Higher cost I C P l a t f o r m What size panel is feasible? Assembly of die on panel Die placement accuracy may be more difficult to control with large panels Large area bonders may be required Throughput (time required to

15、pick and place die in panel) How is placement accuracy impacted by tape and mold compound? What level of inspection is required to verify accuracy? What speed? Dielectric dispense methods? Spin coat? Other methods? How to control run-out at edge? Need inspection for even coating? Molding materials a

16、nd process? Panel warpage Warpageincreases with panel size Impact of materials (mold compound and filler) What type of inspection is requires and how will it work with warped panels Via formation method (minimum via diameter) Via alignment Metal plating Metal to dielectric interface (what inspection requirements?) How to sputter seed layer? Interconnect reliability? Inspection for broken metal traces etc. Singulat

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号