III型板式轨道基本结构

上传人:油条 文档编号:103251022 上传时间:2019-10-06 格式:DOC 页数:11 大小:2.45MB
返回 下载 相关 举报
III型板式轨道基本结构_第1页
第1页 / 共11页
III型板式轨道基本结构_第2页
第2页 / 共11页
III型板式轨道基本结构_第3页
第3页 / 共11页
III型板式轨道基本结构_第4页
第4页 / 共11页
III型板式轨道基本结构_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《III型板式轨道基本结构》由会员分享,可在线阅读,更多相关《III型板式轨道基本结构(11页珍藏版)》请在金锄头文库上搜索。

1、型板式轨道基本结构(武汉城际、盘营客专铁路轨道培训班讲义)西南交通大学土木工程学院 王其昌(二一二年一月 四川成都)1引言1.1 研发目的为了构建武汉城市圈城际铁路和盘营客专铁路板式无砟轨道,在总结我国既有无砟轨道研究与应用经验的基础上,结合无砟轨道技术再创新研究成果,并借鉴成灌线的经验,研发并提出了具有完全自主知识产权的CRTS型板式无砟轨道。1.2 自主创新CRTS型板式无砟轨道是对既有无砟轨道的优化与集成,其主要创新点是:改变了板式轨道的限位方式、扩展了板下填充层材料、优化了轨道板结构、改善了轨道弹性及完善了设计理论体系等方面。1)板下填充层材料型板式轨道通过轨道板板下两排U形筋,将内设

2、钢筋网片的自密实混凝土与轨道板可靠连接成复合结构,结构整体性好,可以控制轨道板离缝、翘曲和板下填充层开裂;自密实混凝土与CAM填充层相比较,其工艺简单、性能稳定、耐久性好、成本低廉。2)板式轨道限位方式型板式轨道采用板下U形筋自密实混凝土底座凹槽的限位方式,彻底取消了型板的凸台、型板的端刺限位方式。同时也取消了作为板下填充层材料用的CA砂浆。从而,可简化施工工艺,减少环境污染,降低工程投资。3)轨道弹性轨道板改原用无挡肩板为有挡肩板,配套弹性不分开式扣件,有利于降低轨道刚度,提高轨道弹性。1.3 中国模式CRTS型板式无砟轨道已在成灌铁路成功铺设,迄今运营状态良好。武汉城市圈城际铁路经再行优化

3、、完善后的CRTS型板式无砟轨道施工图,可用于武汉城市圈城际铁路。我们有理由相信,通过建设及运营实践的不断考核与检验,最终必将形成中国板式无砟轨道模式。2武汉城轨与盘营客专铁路型板式轨道结构2.1 结构组成CRTS型板式无砟轨道是由钢轨、弹性不分开式扣件、预制有挡肩轨道板、内设钢筋网片的自密实混凝土填充层、中间隔离层和带有限位凹槽的钢筋混凝土底座等部分组成。路基、桥梁和隧道地段型板式轨道均采用单元分块式结构,轨道板间无连接。2.2 轨道结构及技术参数武汉城轨与盘营客专铁路所用CRTS型板式无砟轨道的典型横断面及技术参数分别如图2.2.1和表2.2.2所示。图2.2.1 III型板板式轨道典型横

4、断面图表2.2.2 III型板板式轨道结构参数结构组成单位武汉城轨铁路盘营客专铁路钢轨类型U71Mn(K) 60U71Mn(K) 60定尺长m100100高度mm176176扣件类型WJ-8BWJ-8B高度mm3838间距mm687630轨道板承轨槽厚mm3838长度mm53505600宽度mm25002500厚度mm190210混凝土强度等级C60C60填充层材料C40自密实混凝土C40自密实混凝土厚度mm90100宽度mm25002500长度mm同轨道板长同轨道板长底座厚度mm240(路)、190(桥隧)280(路)、180(桥隧)宽度mm3100(路)、2900(桥隧)3100(路)、2

5、900(桥隧)长度mm路基3块板长,隧道4块板长, 桥上1块板长 路基3块板长,隧道4块板长, 桥上1块板长混凝土强度等级C40C40限位方式板下U形筋+底座凹槽板下U形筋+底座凹槽板间连接方式路桥隧板间均无连接路桥隧板间均无连接结构高度路基mm772842桥梁mm722742隧道mm722742武汉与盘营在路基、桥梁和隧道地段所用轨道板均为单元板,板间无连接,均支承在钢筋混凝土底座上,这有利于工程的标准化施工管理。3型板式轨道主要技术特征3.1 钢轨与扣件3.1.1 钢轨U71Mn(K)60kg/m , 定尺长100m无孔新轨。3.1.2 扣件 1)扣件类型为WJ-8B型有挡肩弹条扣件,有利

6、于降低轨道刚度,提高轨道弹性。2)调整范围: 高低 -4mm+26mm; 轨向 10mm。3)弹性垫板静刚度 C静=233 kN/mm; 动刚度 C动=355kN/mm; 动静刚度比 1.35。4)扣件阻力:每组常阻力扣件钢轨纵向阻力9kN;每组小阻力扣件钢轨纵向阻力为4kN。5)扣件结构高度:38 mm。3.2 型轨道板3.2.1 轨道板结构1) 轨道板为有挡肩、双向后张法预应力钢筋混凝土结构,混凝土强度等级C60,按60(或100)年使用寿命设计。2)板上设置承轨槽,承轨面设置1:40轨底坡,配套有挡肩扣件,可采用低刚度钢轨扣件。3)为适应城际轨道交通小半径曲线地段铺设的需要,可视具体情况

7、,可考虑采用二维可调模板方法制造型板,以调整承轨槽的空间位置。4)板下设置两排U形连接钢筋,通过与内设钢筋网片的自密实混凝土紧密联结,形成复合板结构,以期防止轨道板离缝或自密实混凝土裂缝的出现。3.2.2 轨道板长度1)轨道板长度,自然是越长越重,安放后越稳定,越有利于提高工效,但受到预制、运输的限制,以及考虑到基础一旦变形起道整修的困难和曲线地段铺设等问题,又不宜过长,一般以57m左右为限。2)若轨道板较长,又铺设在小半径曲线地段时,有可能会遇到轨道板空间位置如何合理调整的问题。3)此外, 板长还应考虑主型梁梁型和连续梁梁跨长度的配板需要,以及尚须考虑配置扣件间距的要求,同时应力求板长标准化

8、,尽量减少异形板的类型。4)现行轨道板标准长度型板:板长4962mm的扣件间距为629mm,板长4856 mm的扣件间距为617 mm;型板:板长6450mm的扣件间距650mm;型板:武汉四线标准板长为5350mm,扣件间距687 mm。这样,与型板相比每公里少铺15块,扣件少用240组,有利于提高轨道板制造和铺设的工效,节省工程成本。盘营线标准板长为5600mm(扣件间距630 mm),与型板相比每公里少铺23块,扣件少用368组,也有利于提高轨道板制造和铺设的工效,节省工程成本。3.2.3 板间有无连接问题1)根据视钢轨和轨道板为弹性地基上梁板弯曲变形模式的计算结果可知,如果轨道板足够长

9、,则板端和板中的钢轨挠度差将会很小,并且车轮载荷通过时,相邻板两端的错位也较小,为此没有必要把轨道板连接起来。这是考虑在实用中不必担心板端会有过大的冲击作用。2)目前现状是:型板式轨道在路桥隧地段均为单元板,板间无连接;型板式轨道在路桥隧地段均为纵连板,板间有连接;而型板式轨道,成灌市域铁路在桥隧地段为单元板,板间无连接,路基地段为纵连板,板间有连接;武汉城轨及盘营客专则在路桥隧地段均采用单元板,板间无连接。这不仅省去纵连的麻烦和隐患,也便于标准化管理。3)至于板间是连接还是不连接问题,各有利弊,各有所得,两者皆行。一般说,纵连板式轨道整体性好,构建复杂,费用较高,维修较差;而单元板式轨道受力

10、明确,结构简单,施工方便,维修较易。3.2.4 梁上配板板缝一般为70100mm。1)型板:32m梁 54962+23685+670=32600mm;24m梁 54856+480=24600mm。2)型板:连续配板,板间需连接,形成纵连板。3)型板:武汉城轨: 32m梁 65350+5100=32600mm,梁缝处扣件间距641mm;24m梁路基地段 5350 mm长标准板配端部所需长度异形板。盘营客专:32m梁 45600+24925+570=32600mm;梁缝处扣件间距为590mm;24m梁 54856+480=24600mm,梁缝处扣件间距为637mm。路基地段 5600 mm长标准板

11、配端部所需长度异形板。3.3自密实混凝土3.3.1 主要功能1)板下填充层作为板式轨道系统的重要组成部件,它位于轨道板与混凝土底座之间,其主要功能可以归纳为填充调整; 承力传力。2)填充调整: 全面均匀地支承轨道板, 消除轨道板与底座之间的间隙;便于调整轨道高低,提高施工效率和下部基础变形时的可维护性。3)承力传力: 承受由轨道板传来的垂向力和纵横向水平力,并把它传递给底座和限位装置;分散列车荷载作用。3.3.2 外形尺寸武汉城轨: 长宽均等同轨道板为5350 mm 、2500 mm,厚为90 mm;盘营客专:长宽均等同轨道板为5600 mm 、2500 mm,厚为100 mm。3.3.3 板

12、下填充层材料现状1)型板采用低弹性模量200300 Mpa的乳化沥青水泥砂浆(CAM)填充层材料,雷同日本的CAM;2)型板采用高弹性模量700010000 Mpa的乳化沥青水泥砂浆(CAM)填充层材料,雷同德国的BZM;3)型板采用弹模高至20000 Mpa以上的自密实混凝土填充层材料,属于自主研发并已成功应用的一种新型板下填充层材料。4)运营实践表明,无论是采用低弹模或高弹模或甚高弹模材料,均可作为板下填充层材料。5)因此,从板下填充层的功能来看,将乳化沥青水泥砂浆改用自密实混凝土是可行的。3.3.4 为什么要采用自密实混凝土作为板下填充层材料?1)板下砂浆垫层不起弹性作用 计算分析以上三

13、种类型砂浆填充层,同作为轨道板的填充支承作用,其弹性模量为何相去甚远?表3.3.4给出了三种砂浆垫层弹性模量对轨下基础刚度影响的计算结果。表3.3.4 三种不同砂浆垫层弹性模量对轨下基础刚度的计算结果砂浆垫层弹性模量(MPa)换算垫层刚度(kN/mm)轨下垫板刚度(kN/mm)轨下基础刚度(kN/mm)备 注200300060/3058.8/29.7低弹模CAM类同日本CAM70001050060/3060.0/30.0高弹模BZM类同德国BZM2000030000060/3060.0/30.0自密实混凝土由表3.3.4计算结果可知,砂浆垫层弹性模量无论是200 MPa、7000 MPa还是2

14、0000MPa,对轨下基础刚度都没有根本影响。换句话说,砂浆垫层难以给板式轨道系统提供弹性作用。 实践表明,即使CAM填充层的弹性模量相差100倍,其轨道整体刚度也仅差3 kN/mm, 微乎其微。设计CAM填充层的压缩变形为0.074 mm, 实测CAM填充层的动位移为0.070.1 mm, 可见, 变形很小, 起不到缓冲作用。 真正在板式轨道系统中起弹性作用的,是扣件组成中弹性垫板刚度的大小。当弹性垫板刚度从60 kN/mm降至30 kN/mm时,无论砂浆垫层弹性模量如何,轨下基础弹性几乎提高1倍。可见, WJ-8B型扣件规定其弹性垫板静刚度指标为2026kN/mm,是符合板式轨道对其整体弹性要求的。而轨道合理刚度指标,根据当前动车组的运营条件,以1822kN/mm为更佳。2)如何提高板下填充层质量水平? 板式轨道设计使用寿命为60年,这对于轨道板和底座来说问题不大,而对于处在其间的填充层的寿命能不能达到60年,确实是一大疑问。如果达不到60年使用寿命,势必会存在修补或更换的问题,经常修补或更换填充层是很麻烦的,不可思议的。 就板下填充层而言,所谓寿命主要是指其耐久性,而耐久性又主要体现在填充层砂浆的干燥收缩

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 其它中学文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号