【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法

上传人:德****1 文档编号:1031836 上传时间:2017-05-26 格式:DOCX 页数:10 大小:716.11KB
返回 下载 相关 举报
【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法_第1页
第1页 / 共10页
【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法_第2页
第2页 / 共10页
【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法_第3页
第3页 / 共10页
【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法_第4页
第4页 / 共10页
【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法》由会员分享,可在线阅读,更多相关《【2017年整理】基于LSM303DLH集成传感器的电子罗盘实现方法(10页珍藏版)》请在金锄头文库上搜索。

1、基于 LSM303DLH 集成传感器的电子罗盘实现方法电子罗盘是一种重要的导航工具,能实时提供移动物体的航向和姿态。随着半导体工艺的进步和手机操作系统的发展,集成了越来越多传感器的智能手机变得功能强大,很多手机上都实现了电子罗盘的功能。而基于电子罗盘的应用(如 Android 的 Skymap)在各个软件平台上也流行起来。要实现电子罗盘功能,需要一个检测磁场的三轴磁力传感器和一个三轴加速度传感器。随着微机械工艺的成熟,意法半导体推出将三轴磁力计和三轴加速计集成在一个封装里的二合一传感器模块 LSM303DLH,方便用户在短时间内设计出成本低、性能高的电子罗盘。本文以 LSM303DLH 为例讨

2、论该器件的工作原理、技术参数和电子罗盘的实现方法。1. 地磁场和航向角的背景知识如图 1 所示,地球的磁场象一个条形磁体一样由磁南极指向磁北极。在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。用来衡量磁感应强度大小的单位是 Tesla 或者 Gauss(1Tesla=10000Gauss)。随着地理位置的不同,通常地磁场的强度是 0.4-0.6 Gauss。需要注意的是,磁北极和地理上的北极并不重合,通常他们之间有 11 度左右的夹角。图 1 地磁场分布图地磁场是一个矢量,对于一个固定的地点来说,这个矢量可以被分解为两个与当地水平面平行的分量和

3、一个与当地水平面垂直的分量。如果保持电子罗盘和当地的水平面平行,那么罗盘中磁力计的三个轴就和这三个分量对应起来,如图 2 所示。图 2 地磁场矢量分解示意图实际上对水平方向的两个分量来说,他们的矢量和总是指向磁北的。罗盘中的航向角(Azimuth)就是当前方向和磁北的夹角。由于罗盘保持水平,只需要用磁力计水平方向两轴(通常为 X 轴和 Y 轴)的检测数据就可以用式 1 计算出航向角。当罗盘水平旋转的时候,航向角在 0- 360 之间变化。2.ST 集成磁力计和加速计的传感器模块 LSM303DLH2.1 磁力计工作原理在 LSM303DLH 中磁力计采用各向异性磁致电阻(Anisotropic

4、 Magneto-Resistance)材料来检测空间中磁感应强度的大小。这种具有晶体结构的合金材料对外界的磁场很敏感,磁场的强弱变化会导致 AMR 自身电阻值发生变化。在制造过程中,将一个强磁场加在 AMR 上使其在某一方向上磁化,建立起一个主磁域,与主磁域垂直的轴被称为该 AMR 的敏感轴,如图 3 所示。为了使测量结果以线性的方式变化,AMR 材料上的金属导线呈 45 角倾斜排列,电流从这些导线上流过,如图 4 所示。由初始的强磁场在 AMR 材料上建立起来的主磁域和电流的方向有 45 的夹角。当有外界磁场 Ha 时,AMR 上主磁域方向就会发生变化而不再是初始的方向了,那么磁场方向和电

5、流的夹角 也会发生变化,如图5 所示。对于 AMR 材料来说, 角的变化会引起 AMR 自身阻值的变化,并且呈线性关系,如图 6 所示。ST 利用惠斯通电桥检测 AMR 阻值的变化,如图 7 所示。R1/R2/R3/R4 是初始状态相同的 AMR 电阻,但是 R1/R2 和 R3/R4 具有相反的磁化特性。当检测到外界磁场的时候,R1/R2 阻值增加R 而 R3/R4 减少R。这样在没有外界磁场的情况下,电桥的输出为零;而在有外界磁场时电桥的输出为一个微小的电压V。图 7 惠斯通电桥当 R1=R2=R3=R4=R,在外界磁场的作用下电阻变化为R 时,电桥输出V 正比于R。这就是磁力计的工作原理

6、。2.2 置位/复位(Set/Reset)电路由于受到外界环境的影响,LSM303DLH 中 AMR 上的主磁域方向不会永久保持不变。LSM303DLH 内置有置位/复位电路,通过内部的金属线圈周期性的产生电流脉冲,恢复初始的主磁域,如图 8 所示。需要注意的是,置位脉冲和复位脉冲产生的效果是一样的,只是方向不同而已。图 8 LSM303DLH 置位/复位电路置位/复位电路给 LSM303DLH 带来很多优点:1) 即使遇到外界强磁场的干扰,在干扰消失后 LSM303DLH 也能恢复正常工作而不需要用户再次进行校正。2) 即使长时间工作也能保持初始磁化方向实现精确测量,不会因为芯片温度变化或内

7、部噪音增大而影响测量精度。3) 消除由于温漂引起的电桥偏差。2.3 LSM303DLH 的性能参数LSM303DLH 集成三轴磁力计和三轴加速计,采用数字接口。磁力计的测量范围从 1.3 Gauss 到 8.1 Gauss 共分 7 档,用户可以自由选择。并且在 20 Gauss 以内的磁场环境下都能够保持一致的测量效果和相同的敏感度。它的分辨率可以达到 8 mGauss 并且内部采用 12位 ADC,以保证对磁场强度的精确测量。和采用霍尔效应原理的磁力计相比,LSM303DLH 的功耗低,精度高,线性度好,并且不需要温度补偿。LSM303DLH 具有自动检测功能。当控制寄存器 A 被置位时,

8、芯片内部的自测电路会产生一个约为地磁场大小的激励信号并输出。用户可以通过输出数据来判断芯片是否正常工作。作为高集成度的传感器模组,除了磁力计以外 LSM303DLH 还集成一颗高性能的加速计。加速计同样采用 12 位 ADC,可以达到 1mg 的测量精度。加速计可运行于低功耗模式,并有睡眠/唤醒功能,可大大降低功耗。同时,加速计还集成了 6 轴方向检测,两路可编程中断接口。3. ST 电子罗盘方案介绍一个传统的电子罗盘系统至少需要一个三轴的磁力计以测量磁场数据,一个三轴加速计以测量罗盘倾角,通过信号条理和数据采集部分将三维空间中的重力分布和磁场数据传送给处理器。处理器通过磁场数据计算出方位角,

9、通过重力数据进行倾斜补偿。这样处理后输出的方位角不受电子罗盘空间姿态的影响,如图 9 所示。图 9 电子罗盘结构示意图LSM303DLH 将上述的加速计、磁力计、A/D 转化器及信号条理电路集成在一起,仍然通过 I2C 总线和处理器通信。这样只用一颗芯片就实现了 6 轴的数据检测和输出,降低了客户的设计难度,减小了 PCB 板的占用面积,降低了器件成本。LSM303DLH 的典型应用如图 10 所示。它需要的周边器件很少,连接也很简单,磁力计和加速计各自有一条 I2C 总线和处理器通信。如果客户的 I/O 接口电平为 1.8V,Vdd_dig_M、Vdd_IO_A 和 Vdd_I2C_Bus

10、均可接 1.8V 供电,Vdd 使用 2.5V 以上供电即可;如果客户接口电平为 2.6V,除了 Vdd_dig_M 要求 1.8V 以外,其他皆可以用 2.6V。在上文中提到,LSM303DLH 需要置位/复位电路以维持 AMR 的主磁域。C1 和 C2 为置位/复位电路的外部匹配电容,由于对置位脉冲和复位脉冲有一定的要求,建议用户不要随意修改 C1 和 C2 的大小。对于便携式设备而言,器件的功耗非常重要,直接影响其待机的时间。LSM303DLH 可以分别对磁力计和加速计的供电模式进行控制,使其进入睡眠或低功耗模式。并且用户可自行调整磁力计和加速计的数据更新频率,以调整功耗水平。在磁力计数

11、据更新频率为7.5Hz、加速计数据更新频率为 50Hz 时,消耗电流典型值为 0.83mA。在待机模式时,消耗电流小于 3uA。图 10 LSM303DLH 典型应用电路图4. 铁磁场干扰及校准电子指南针主要是通过感知地球磁场的存在来计算磁北极的方向。然而由于地球磁场在一般情况下只有微弱的 0.5 高斯,而一个普通的手机喇叭当相距 2 厘米时仍会有大约 4 高斯的磁场,一个手机马达在相距 2 厘米时会有大约 6 高斯的磁场,这一特点使得针对电子设备表面地球磁场的测量很容易受到电子设备本身的干扰。磁场干扰是指由于具有磁性物质或者可以影响局部磁场强度的物质存在,使得磁传感器所放置位置上的地球磁场发

12、生了偏差。如图11 所示,在磁传感器的 XYZ 坐标系中,绿色的圆表示地球磁场矢量绕 z 轴圆周转动过程中在 XY 平面内的投影轨迹,再没有外界任何磁场干扰的情况下,此轨迹将会是一个标准的以 O(0,0)为中心的圆。当存在外界磁场干扰的情况时,测量得到的磁场强度矢量 将为该点地球磁场 与干扰磁场 的矢量和。记作:图 11 磁传感器 XY 坐标以及磁力线投影轨迹一般可以认为,干扰磁场 在该点可以视为一个恒定的矢量。有很多因素可以造成磁场的干扰,如摆放在电路板上的马达和喇叭,还有含有铁镍钴等金属的材料如屏蔽罩,螺丝,电阻, LCD 背板以及外壳等等。同样根据安培定律有电流通过的导线也会产生磁场,如

13、图 12。图 12 电流对磁场产生的影响为了校准这些来自电路板的磁场干扰,主要的工作就是通过计算将 求出。4.1 平面校准方法针对 XY 轴的校准,将配备有磁传感器的设备在 XY 平面内自转,如图 11,等价于将地球磁场矢量绕着过点 O(x,y)垂直于 XY 平面的法线旋转, 而红色的圆为磁场矢量在旋转过程中在 XY 平面内投影的轨迹。这可以找到圆心的位置为(Xmax + Xmin)/2, (Ymax + Ymin)/2). 同样将设备在 XZ 平面内旋转可以得到地球磁场在 XZ 平面上的轨迹圆,这可以求出三维空间中的磁场干扰矢量 (x, y, z).4.2 立体 8 字校准方法一般情况下,当

14、带有传感器的设备在空中各个方向旋转时,测量值组成的空间几何结构实际上是一个圆球,所有的采样点都落在这个球的表面上,如图 13 所示,这一点同两维平面内投影得到的圆类似。图 13 地球磁场空间旋转后在传感器空间坐标内得到球体这种情况下,可以通过足够的样本点求出圆心 O(x, y, z), 即固定磁场干扰矢量的大小及方向。公式如下:8 字校准法要求用户使用需要校准的设备在空中做 8 字晃动,原则上尽量多的让设备法线方向指向空间的所有 8 个象限,如图 14 所示。4.2 十面校准方法同样,通过以下 10 面校准方法,也可以达到校准的目的。如图 16 所示,经过 10 面校准方法之后,同样可以采样到

15、以上所述球体表面的部分轨迹,从而推导出球心的位置,即固定磁场干扰矢量的大小及方向。图 16 10 面校准后的空间轨迹5.倾斜补偿及航偏角计算经过校准后电子指南针在水平面上已经可以正常使用了。但是更多的时候手机并不是保持水平的,通常它和水平面都有一个夹角。这个夹角会影响航向角的精度,需要通过加速度传感器进行倾斜补偿。对于一个物体在空中的姿态,导航系统里早已有定义,如图 17 所示,Android 中也采用了这个定义。Pitch()定义为 x 轴和水平面的夹角,图示方向为正方向;Roll()定义为 y 轴和水平面的夹角,图示方向为正方向。由 Pitch 角引起的航向角的误差如图 18 所示。可以看

16、出,在 x 轴方向 10 度的倾斜角就可以引起航向角最大 7-8 度的误差。图 17 Pitch 角和 Roll 角定义 图 18 Pitch 角引起的航向角误差手机在空中的倾斜姿态如图 19 所示,通过 3 轴加速度传感器检测出三个轴上重力加速度的分量,再通过式 2 可以计算出 Pitch 和Roll。图 19 手机在空中的倾斜姿态6.Android 平台指南针的实现在当前流行的 android 手机中,很多都配备有指南针的功能。为了实现这一功能,只需要配备有 ST 提供的二合一传感模块LSM303DLH,ST 提供整套解决方案。Android 中的软件实现可以由以下框图表示:其中包括: BSP Reference Linux Kernel Driver (LSM303DLH_ACC + LSM303DLH_MAG) HAL Library(Sensors_lsm303dlh + Libl

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号