极限概念发展的几个历史阶段资料

上传人:w****i 文档编号:102335664 上传时间:2019-10-02 格式:PDF 页数:4 大小:235.19KB
返回 下载 相关 举报
极限概念发展的几个历史阶段资料_第1页
第1页 / 共4页
极限概念发展的几个历史阶段资料_第2页
第2页 / 共4页
极限概念发展的几个历史阶段资料_第3页
第3页 / 共4页
极限概念发展的几个历史阶段资料_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《极限概念发展的几个历史阶段资料》由会员分享,可在线阅读,更多相关《极限概念发展的几个历史阶段资料(4页珍藏版)》请在金锄头文库上搜索。

1、 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. 微积分史话 极限概念发展的几个历史阶段 王晓硕 (辽宁师范大学数学系,大连, 116029) 极限概念是分析数学中最基本的概念之一,用以描述变量在一定变化过程中的终极状态。 极限 理论是微积分学的基础,它从方法论上突出地表现了微积分学不同于初等数学的特点。从古至今, 人们对于极限概念的认识经历了一段漫长的过程。从最初时期朴素、 直观的极限观经过了2000多 年的发展,演变成为近代严格的极限理论,在现代数学中,人们又引进了更广泛和

2、更一般的极限概 念。这其中的思想演变是渐进的、 相互推动的。本文针对极限概念在不同时期的特点给予粗略的概 述。 一、 朴素的、 直观的极限观 这种极限观在我国古代的文献中就有记载,最著名的是 庄子天下篇 中记载的惠施(约前 370 约前 310) 的一段话:“一尺之锤,日取其半,万世不竭。 ” 4公元 3世纪,中国数学家刘徽 (263 年左右)成功地把极限思想应用于实践,其中最典型的方法就是在计算圆的面积时建立的 “割 圆术” 。由于刘徽所采用的圆的半径为1,这样圆的面积在数值上即等于圆周率,所以说刘微成功地 创立了科学的求圆周率的方法。刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六

3、边 形,然后逐渐倍增边数,依次算出内接正6边形、 正12边形、 、 直至625(192)边形的面积。他利 用公式S2n=nrl n 2 (ln为内接正n边形的边长,S2n为内接2n边形的面积)来求正多边形的面积。 刘徽认为,割得越细,圆内接正多边形与圆面积之差越小,即 “割之弥细,所失弥少。割之又割,以至 于不可割,则与圆和体,而无所失矣” 。这就是割圆术所反映的朴素的极限思想。 刘徽的极限观念与古希腊的安蒂丰不谋而合。智人学派的安蒂丰(A ntiphon,约前480约 前 410) 在讨论化圆为方的问题时想到用边数不断增加的内接正多边形来接近圆面积,而内接正多 边形与圆周之间存在的空隙当多边

4、形的边数不断加倍时被逐渐 “穷竭” 。 后来,希腊数学家欧多克索 斯(Eudoxus约前400约前 347) 建立了下列原理:“对于两个不相等的量,若从较大量中减去大 于其半的量,再从所余量中减去大于其半的量。继续重复这个步骤,则必有某个余量小于原来较小 的量。 ” 1这就是近代分析中的阿基米德公理 “ a 0,b 0,nN,使nab” 的原形。 著名希腊数 学家阿基米德(A rchimede,约前287约前 212) 把上述方法成功地应用于许多面积和体积的计 算。例如,在 方法 一书中,他证明了 “抛物线弓形面积是同底等高三角形的三分之四” 的结果。阿 基米德是根据力学原理去发现问题,然后用

5、欧多克索斯的原理和反证法(双重归谬法)来证明有关 结论的。从阿基米德的工作中,可以看到近代积分学中微元法基本思想的雏形,但是还没有求极限 的观念。 尽管如此,阿基米德所创造的极富启发性的方法,获得了大量的辉煌成果,为后人开辟了广 阔的领域。 由安蒂丰提出,欧多克索斯完善的方法经阿基米德的工作发展到一个高峰。他们的工作到17 世纪被重新研究,欧多克索斯原理被称为 “穷竭法” 。穷竭法所蕴涵的思想就是近代极限概念的雏 04 高等数学研究 STUD IES I N COLLEGE MATHEMAT ICS Vol14,No13 Sep. , 2001 收稿日期: 20010514。 1994-201

6、0 China Academic Journal Electronic Publishing House. All rights reserved. 形。 纵观这一段时期,无论是中国古代还是古希腊数学家们对极限的理解都是比较初步的,形成的 极限观念也是十分朴素和直观的。在对穷竭法的运用中,还没有摆脱几何形式的束缚。但是这些不 足却为后来的数学家们去近一步探索精确的极限概念产生了一定的推动作用。 二、 神秘的极限观 在17世纪,解析几何的创立成为数学发展的转折点。自然科学研究的中心转向自然界中的运 动和变化。数学中自然而然地引入了变量和函数的概念。17世纪下半叶,英国的数学家牛顿(N ew2 t

7、on, I116431727)和德国数学家莱布尼兹(L eibniz, G. W. 16461716)在前人大量工作的基 础上创立了微积分。在建立微积分的过程中,必然要涉及极限概念。最初的极限概念是十分含糊不 清的,并且在某些关键处常常不能自圆其说。下面简要地介绍一下牛顿和莱布尼兹的工作。 牛顿的极限思想主要体现在他的几部著作中,在 流数简论 中,牛顿提出了流数法。他把曲线 f(x,y ) = 0 看作动点的轨迹,动点的坐标x,y是时间的函数,而动点的水平速度分量和垂直速度 分量分别用x和y来表示,牛顿称之为流数,实际上就是x和y对t的导数。在 分析学 中,他把x 的无穷小增量叫作 “瞬”,用

8、o来表示。 在对极限概念的理解上,牛顿在很多地方都是模糊的,常使自 己的解释处于自相矛盾的状态。 这其中最明显的缺陷就是无穷小增量o是不是零?牛顿自认为不是 零,但是在运算的过程中有的时候却常常略去了含有o的项。 事实上,无穷小瞬 “o” 作为分母是不为 零的,但除完之后仍含 “o” 的项在未除之前应为 “o” 的高阶无穷小,也就是牛顿直截了当令其为零的 项。可是,当时牛顿认为无穷小量无层次而言,所以在这一点上他无法给出合乎逻辑的论证。许多 人对此产生了怀疑,亦产生了许多关于微积分的悖论。在而后的 流数法 中,牛顿的流数概念已经 发展到了成熟的阶段,他把随时间变化的量称为流量,把流量的变化率称

9、为流数,瞬的概念仍保留 下来,并且基本方法仍是舍弃无穷小。虽然这部书较前几部有了一定的改进,提出了有效的计算方 法,但是它仍不能逃避上述逻辑上的困难。原理(这是牛顿写得较早但发表最迟的一部著作)在创 导首末比方法的同时保留了无穷小瞬。这其中对 “瞬” 的解释所使用的语言仍然是含糊的牛顿 的:“有限元素不是瞬,而是瞬所生成的量。 我们应当把它们想象成有限量的初生元。 ” 1这种说法也 引起了很多争议。 莱布尼兹在这方面也做出了很多的尝试。 在他的 数学笔记 中,我们可以发现他的微积分思想 来源于对和、 差可逆性的研究。 莱布尼兹在研究帕斯卡三角形时洞察到和与差的互逆性与依赖于坐 标之差的切线问题

10、及依赖于坐标之和的求积问题的互逆性相一致。于是他用x表示数列的项数用 y表示这一项的值,用dx表示数列的相邻项的序数差而用dy表示相邻项的值的差。 后来他又给出 了“ ” 的含义。 “ ” 意味着和,“d” 意味着差。在莱布尼兹构造的特征三角形中,他所使用的dy?dx 相当于牛顿的y?x,即y对x的导数。在对无穷小的理解上莱布尼兹与牛顿有所不同,他把无穷小 量理解为离散的,可分为不同层次,因此他给出了高阶微分的概念及符号。但是在计算过程中莱布 尼兹和牛顿一样,常常采用略去无穷小的方法。人们开始质问无穷小和零到底有什么区别,还质问 在推理的过程中为何舍弃无穷小?对于这种问题莱布尼兹的回答不能让人

11、满意。他曾在一封回信 中写到:“考虑这样一种无穷小是有用的。当寻找它们的比时,不把它们当作零,但是只要它们和无 法相比的大量一起出现,就把它们舍弃。 ” 1并且莱布尼兹对于他自己定义的 dy、dx、dy?dx的最终 含义也给不出合乎逻辑的解释。他有时把无穷小量dx和dy描述成正在消失的或者刚出现的量, 与已经形成的量相对应,而这些无穷小量不是零,却又小于任何有限的量。有时,他又求助于几何, 说:“高阶微分和低阶微分相比,如同点和直线相比一样。比如dx比x如同点比地球。 ” 对于dy? 14第4卷第3期 王晓硕:根据概含发展的几个历史阶段 1994-2010 China Academic Jou

12、rnal Electronic Publishing House. All rights reserved. dx,莱布尼兹认为两个无穷小量的比是无限小量之商,但是这个比仍然能用有限的量来表出。人们 对于这些摸棱两可的解释提出了质疑和感到困惑。 在17世纪,其他数学家与牛顿和莱布尼兹一样,对极限概念的理解也是处于含糊、 难圆其说的 状态。极限概念的模糊不清,引起18世纪许多人对微积分的攻击,其中英国哲学家伯克莱(Berke2 ley, G. 1685- - 1753)在 分析学家 中对微积分的反对和攻击是最著名的。他嘲笑无穷小瞬 “o” 是 消失的量的幽灵”,说牛顿的无穷小一会儿是零,一会儿又

13、不是零,简直是 “瞪着眼睛说瞎话”,等等。 这些攻击不仅为极限概念蒙上了一层神秘的色彩,而且对分析数学的发展也带来了危机性的困难。 三、 严格的极限理论 为了克服无穷小带来的困难,在18至19世纪,数学家们提出了许多方案。明确地将极限作为 微积分基本概念的是法国数学家达朗贝尔(DA lembert, J. R. 17171783)。他在一些文章中给 出了极限的较明确的定义:“一个变量趋于一个固定量,趋于程度小于任何给定量,且变量永远达不 到固定量。 ” 3可惜的是他也没有把它公式化, 这就使得他的极限概念仍是描述性的、 通俗的。但是 他所定义的极限已初步摆脱了几何、 力学的直观原型。因此,达朗

14、贝尔的极限概念被看作是现代严 格极限理论的先导。 到了19世纪,数学家们开始转向微积分基础的重建。许多微积分中的重要概念,如极限、 函数 的连续性和级数的收敛性等都被重新考虑。1817年,捷克数学家波尔查诺(Bolzano, B. 1781 1848)首先抛弃无穷小概念, 用极限观念给出导数和连续性的定义,并得到判别级数收敛的一般准 则,还建立了确界存在原理,可惜他的工作被长期埋没。严格的极限理论是由法国数学家柯西 (Cauchy, A.2L. 17891857)初建,由德国数学家外尔斯特拉斯(W eierstrass, K. T. W. 18151897)完成的。柯西是一位十分多产的数学家,

15、他在数学的许多领域中均作出了伟大的贡 献。 在分析基础严格化的过程中,他的贡献可以和俄国数学家罗巴切夫斯基础在几何学中的贡献以 及挪威数学家阿贝尔与法国数学家伽罗瓦在代数学中的贡献相媲美。 柯西和波尔查诺一样,他对极 限概念也是基于纯算术的考虑。1821年,柯西在 教程 中写道:“当一个变量逐次所取的值无限趋 于一个定值,最终使变量的值和该定值之差要多小有多小,这个定值叫做所有其它值的极限。 ” 5可 见,柯西使极限概念明确的成为算术的,而摆脱了长期以来的几何说明。他提出了极限理论的 2方 法,把整个极限用不等式来刻画。他引入 “lim” 来表示极限,并且用希腊字母 表示任意小的差,但 更多的

16、时候他用 表示任意小的差。这样以极限的算术定义为基础,柯西给出了无穷小,无穷大的 定义:“当一个变量的数值这样地无限减小,使之收敛到极限零,那么这个变量就叫做无穷小;当变 量的数值这样地无限的增大,使该变量收敛到极限,那么该变量就成为无穷大。 ” 4这样柯西就澄 清了莱布尼兹的无穷小概念而且把无穷小量从难圆其说的尴尬的境地中解脱出来。 在18511854年期间,外尔斯特拉斯对柯西的 2方法进行了改造,他也力求避免直观而把 分析奠基在算术概念的基础上。 外尔斯特拉斯反对 “一个变量趋于一个极限” 的说法,因为这种说法 使人们想起了时间和运动。 他把一个变量简单的解释成一个字母,该字母代表它可以取值的集合中 的任何一个数,这样运动就消除了。 一个连续变量是这样一个变量,若x0是该变量的集合中的任一 值而 是任意正数,则一定有变量的其它值在区间(x0-,x0+)中。 区

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 大学课件

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号