合成孔径雷达概述.doc

上传人:F****n 文档编号:101916932 上传时间:2019-09-30 格式:DOC 页数:40 大小:715.50KB
返回 下载 相关 举报
合成孔径雷达概述.doc_第1页
第1页 / 共40页
合成孔径雷达概述.doc_第2页
第2页 / 共40页
合成孔径雷达概述.doc_第3页
第3页 / 共40页
合成孔径雷达概述.doc_第4页
第4页 / 共40页
合成孔径雷达概述.doc_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《合成孔径雷达概述.doc》由会员分享,可在线阅读,更多相关《合成孔径雷达概述.doc(40页珍藏版)》请在金锄头文库上搜索。

1、合成孔径雷达概述蔡B二OO八年三月二十三合成孔径雷达概述1合成孔径雷达简介31.1合成孔径雷达的概念41.2合成孔径雷达的分类41.3合成孔径雷达(SAR)的特点52合成孔径雷达的发展历史62.1国外合成孔径雷达的发展历程及现状62.1.1合成孔径雷达发展历程表72.1.2世界各国的SAR系统102.2我国的发展概况122.2.1我国SAR研究历程表122.2.2国内各单位的研究现状132.2.2.1电子科技大学132.2.2.2中科院电子所132.2.2.3国防科技大学142.2.2.4西安电子科技大学143合成孔径雷达的应用144合成孔径雷达的发展趋势154.1多参数SAR系统164.2聚

2、束SAR164.3极化干涉SAR(POLINSAR)174.4合成孔径激光雷达(Synthetic Aperture Ladar)174.5小型化成为星载合成孔径雷达发展的主要趋势184.6性能技术指标不断提高184.7多功能、多模式是未来星载SAR的主要特征194.8雷达与可见光卫星的多星组网是主要的使用模式194.9分布SAR成为一种很有发展潜力的星载合成孔径雷达194.10星载合成孔径雷达的干扰与反干扰成为电子战的重要内容204.11军用和民用卫星的界线越来越不明显205与SAR相关技术的研究动态215.1国内外SAR图像相干斑抑制的研究现状215.2合成孔径雷达干扰技术的现状和发展21

3、5.3SAR图像目标检测与识别235.4恒虚警技术的研究现状与发展动向265.5SAR图像变化检测方法285.6干涉合成孔径雷达325.7机载合成孔径雷达技术发展动态345.8SAR图像地理编码技术的发展状况365.9星载SAR天线方向图在轨测试的发展状况385.10逆合成孔径雷达的发展动态395.11干涉合成孔径雷达的发展简史与应用39合成孔径雷达概述1 合成孔径雷达简介合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。它是二十世纪高新科技的产物,是利用合成孔径原理、脉冲压缩技术和信号处理方法,以真实的小孔径天线获得距

4、离向和方位向双向高分辨率遥感成像的雷达系统,在成像雷达中占有绝对重要的地位。近年来由于超大规模数字集成电路的发展、高速数字芯片的出现以及先进的数字信号处理算法的发展,使SAR具备全天候、全天时工作和实时处理信号的能力。它在不同频段、不同极化下可得到目标的高分辨率雷达图像,为人们提供非常有用的目标信息,已经被广泛应用于军事、经济和科技等众多领域,有着广泛的应用前景和发展潜力。国内外越来越多的科技研究者已投身于这一领域的研究。在早期研究雷达成像系统时采用的是真实孔径雷达系统(Real Aperture Radar)。真实孔径雷达成像系统及处理设备相对较为简单,但它存在一个难以解决的问题,就是其方位

5、分辨率要受到天线尺寸的限制。所以要想用真实孔径雷达系统获得较高的分辨率,就需要较长的天线。但是所采用天线的长短往往又受制于雷达系统被载平台大小的限制,不可能为了提高分辨率无休止地增加天线长度。幸运地是,随着雷达成像理论,天线设计理论、信号处理、计算机软件和硬件体系的不断完善和发展,合成孔径雷达(Synthetic Aperture Radar)的概念被提出来。合成孔径雷达系统的成像原理简单来说就是利用目标与雷达的相对运动,通过单阵元来完成空间采样,以单阵元在不同相对空间位置上所接收到的回波时间采样序列去取代由阵列天线所获取的波前空间采样集合。只要目标被发射能量波瓣照射到或位于波束宽度之内,此目

6、标就会被采样并被成像。利用目标雷达相对运动形成的轨迹来构成一个合成孔径以取代庞大的阵列实孔径,从而保持优异的角分辨率。从潜在的意义上来说,其方位分辨率与波长和斜距无关,是雷达成像技术的一个飞跃,因而具有巨大的吸引力,特别是对于军事和地理遥感的应用更是如此。因此,合成孔径雷达(SAR)已经成为雷达成像技术的主流方向。1.1 合成孔径雷达的概念合成孔径雷达是一种高分辨率相干成像雷达。高分辨率在这里包含着两方面的含义:即高的方位向分辨率和足够高的距离向分辨率。它采用多普勒频移理论和雷达相干理论为基础的合成孔径技术来提高雷达的方位向分辨率;而距离向分辨率的提高则通过脉冲压缩技术来实现。它的具体含义我们

7、可以通过以下四个方面来理解:(1)从合成孔径的角度。它利用载机平台带动天线运动,在不同位置上以脉冲重复频率(PRF)发射和接收信号,并把一系列回波信号存储记录下来,然后作相干处理,就如同在所经过的一系列位置上,都有一个天线单元在同时发射和接收信号一样,这样就在平台所经过的路程上形成一个大尺寸的阵列天线,从而获得很窄的波束。如果脉冲重复频率达到一定程度(足够高),以致相邻的天线单元间首尾相接,则可看作形成了连续孔径天线。诚然这个大孔径天线要靠信号处理的方法合成。这种解释方法给出了合成孔径的字面解释。(2)从多普勒频率分辨的角度。如果我们考察点目标在相参脉冲串中的相位历程,求出其多普勒频移,对于在

8、同一波束、同一距离波门内但不同方位的点目标,由于其相对于雷达的径向速度不同而具有不同的多普勒频率,因此可以用频谱分析的方法将它们区分开。这种理解又被称为多普勒波束锐化。(3)从脉冲压缩的角度。对于机载正侧视测绘的雷达,地面上的点目标在波束扫描过的时间里,与雷达相对距离变化近似地符合二次多项式。点目标对应的横向回波为线性调频信号,该线性调频信号的调频斜率由发射信号的波长、目标与雷达的距离及载机的速度决定。对此线性调频信号进行匹配滤波,及脉冲压缩处理,就可以获得比真实天线波束窄得多的方位分辨率。因此在SAR信号处理中,经常有纵向压缩、横向压缩的说法。(4)从光学全息照相的角度。如果将线性调频信号作

9、为合成孔径雷达的发射信号,则一个点目标的回波在记录胶片上将呈现Fresnel衍射图,这点和点目标的光学全息图很相似。因此可以用光学全息成像的步骤,来得到原目标的图像。这种与全息照相的相似性,启发了早期的研究者采用光学处理器来实现合成孔径雷达信号处理。以上几种说明虽然从不同的角度出发来说明合成孔径的概念,但都揭示了合成孔径雷达的本质特征,从而为深入理解合成孔径雷达的概念指明了方向。1.2 合成孔径雷达的分类一般情况下合成孔径雷达根据雷达载体的不同,可分为星载SAR,机载SAR和无人机载SAR等类型。根据SAR视角不同,可以分为正侧视、斜视和前视等模式。根据SAR工作的不同方式,又可以分为条带式(

10、Stripmap SAR),聚束式(Spotlight SAR),扫描式(Scan SAR)等(如图1.1所示)。它们在技术上各具特点,应用上相辅相成。目前世界上能够使用的星载和机载SAR系统共有28个。其中处于使用状态的星载SAR系统共有5个。而处于使用状态的机载SAR系统有23个。多数系统具有多种极化方式。最大分辨力3030cm。最大传输数据率100M字节/秒。1.3 合成孔径雷达(SAR)的特点(1)二维高分辨力。(2)分辨力与波长,载体的飞行高度,雷达的作用距离无关。(3)强透射性:不受气候、昼夜等因素影响,具有全天候成像优点;如果选择合适的雷达波长,还能够透过一定的遮蔽物。(4)包括

11、多种散射信息:不同的目标,往往具有不同的介电常数、表面粗糙度等物理和化学特性,它们对微波的不同频率、透射角、及极化方式将呈现不同的散射特性和不同的穿透力,这一性质为目标分类及识别提供了极为有效的新途径。(5)多功能多用途:例如采用并行轨道或者一定基线长度的双天线,可以获得包括地面高度信息在内的三维高分辨图像。(6)多极化,多波段,多工作模式。(7)实现合成孔径原理,需要复杂的信号处理过程和设备。(8)与一般相干成像类似,SAR图像具有相干斑效应,影响图像质量,需要用多视平滑技术减轻其有害影响。2 合成孔径雷达的发展历史2.1 国外合成孔径雷达的发展历程及现状雷达诞生于二战中,从雷达诞生起,就与

12、国防密切不可分,战场上希望在雷达屏幕上能看到目标的真实图像,而不仅是一个亮点。五十多年来人们一直在寻找提高分辨率的方法,由于信息论在雷达信号处理领域中的应用和高速数字处理器件的出现。以及现代信号处理的不断发展,导致了高分辨成像雷达的诞生与发展。这使得人们能够在雷达屏幕上看到了目标的图像。成像雷达的出现使雷达具有了对运动目标、地面目标进行成像和识别的能力,并在微波遥感应用方面表现出越来越大的潜力。它对国防现代化建设具有十分重要的意义。成像雷达技术越来越受到重视,发展迅速。现在不仅有各种实孔径成像雷达,而且有各种机载的、星载的和航天飞机载的用于不同目的合成孔径雷达,并且还出现了逆合成孔径雷达和干涉

13、成像雷达。合成孔径雷达是一有源系统,主动向目标发射电磁波,利用接收到的目标回波的信号经处理后成像。因此合成孔径雷达具有全天时全天候工作能力。合成孔径雷达的思想首先是在1951年6月由美国Goodyear航空公司的Carl Wiley在“用相干移动雷达信号频率分析来获得高的角分辨率”的报告中提出的。报告中提出了将多普勒频率分析应用于相干移动雷达,通过频率分析可以改善雷达的角分辨率,即“多普勒波束锐化”的思想;同时,证明了移动雷达的角分辨率因回波信号中多普勒频率的结构有可能提高,回波信号的瞬时多普勒频移与被测目标沿航迹方向的位置之间存在着一一对应的关系,回波信号的多普勒带宽与波束带宽有关,最窄的角

14、波束发生在垂直于雷达平台速度矢量的侧方。同年,美国Illinois大学控制系统实验室的一个研究小组在C.W. Sherwin的领导下开始对SAR的研究,当时采用的是非相干雷达,发射波束宽度为4.13 度,经过孔径综合后波束宽度变为0.4度。他们证实了“多普勒波束锐化”的概念,从而在理论上证明了SAR原理,而且于1953年7月成功地研制了第一部X波段相干雷达系统,首次获得了第一批非聚焦SAR图像数据,为以后的聚焦型SAR的研究奠定了基础。1953年夏,在美国Michigan大学举办的研讨会上,许多学者提出了利用载机运动可将雷达的真实天线合成为大尺寸的线性天线阵列的概念,即没有必要象真实天线那样在

15、各个位置连续发射和接收,可先在第一阵元位置发收,再在第二阵元位置发收,依次操作并将接收到的回波信号全部储存起来,等最后一个阵元位置发收完毕后将所储存的全部回波信号进行叠加,其效果类似于长线阵天线连续发射和接收(其实,只需用一小天线沿此长线阵轨迹方向前进并发射和接收相干回波信号,对所记录下的接收信号进行适当处理,即可获得一条合成孔径天线的方位向高分辨率),进而推导出SAR的聚焦和非聚焦工作模式;并在1957年8月成功研制出第一个聚焦式光学处理机载合成孔径雷达系统,获得了第一幅全聚焦SAR图像,从此SAR技术进入实用性阶段。 六十年代中期,借助于模拟电子处理器的非实时成像处理,SAR光学处理技术得到进一步完善,同时开展了多频多极化SAR应用技术的研究;六十年代末,Michigan环境研究院成功地研制出第一个民用双频双极化机载SAR系统,主要用于北极海洋成像,同时,使用数字电子处理器进行非实时成像处理。 七十年代,随着电子技术,尤其是VLSI C Very Large Scale IC,超大规模集成电路)技术的飞速发展,SAR的数字成像处理成为必然趋势。七十年代初期,首先使

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号