1992考研数学三真题及全面解析

上传人:简****9 文档编号:101776538 上传时间:2019-09-29 格式:DOC 页数:17 大小:1.33MB
返回 下载 相关 举报
1992考研数学三真题及全面解析_第1页
第1页 / 共17页
1992考研数学三真题及全面解析_第2页
第2页 / 共17页
1992考研数学三真题及全面解析_第3页
第3页 / 共17页
1992考研数学三真题及全面解析_第4页
第4页 / 共17页
1992考研数学三真题及全面解析_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《1992考研数学三真题及全面解析》由会员分享,可在线阅读,更多相关《1992考研数学三真题及全面解析(17页珍藏版)》请在金锄头文库上搜索。

1、1992年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 设商品的需求函数为,其中分别表示为需求量和价格,如果商品需求弹性的绝对值大于1,则商品价格的取值范围是_.(2) 级数的收敛域为_.(3) 交换积分次序_.(4) 设为阶方阵,为阶方阵,且,则_.(5) 将等七个字母随机地排成一行,那么,恰好排成英文单词SCIENCE的概率为_.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 设,其中为连续函数,则等于 ( )(A) (B

2、) (C) 0 (D) 不存在(2) 当时,下面四个无穷小量中,哪一个是比其他三个更高阶的无穷小量? ( )(A) (B) (C) (D) (3) 设为矩阵,齐次线性方程组仅有零解的充分条件是 ( )(A) 的列向量线性无关 (B) 的列向量线性相关(C) 的行向量线性无关 (D) 的行向量线性相关(4) 设当事件与同时发生时,事件必发生,则 ( )(A) (B) (C) (D) (5) 设个随机变量独立同分布,则 ( )(A) 是的无偏估计量 (B) 是的最大似然估计量(C) 是的相合估计量(即一致估计量) (D) 与相互独立三、(本题满分5分)设函数问函数在处是否连续?若不连续,修改函数在

3、处的定义使之连续.四、(本题满分5分)计算五、(本题满分5分)设,求,其中有二阶偏导数.六、(本题满分5分)求连续函数,使它满足.七、(本题满分6分)求证:当时,.八、(本题满分9分)设曲线方程.(1) 把曲线,轴,轴和直线所围成平面图形绕轴旋转一周,得一旋转体,求此旋转体体积;求满足的.(2) 在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.九、(本题满分7分)设矩阵与相似,其中.(1) 求和的值.(2) 求可逆矩阵,使得.十、(本题满分6分)已知三阶矩阵,且的每一个列向量都是以下方程组的解:(1) 求的值; (2) 证明.十一、(本题满分6分)设分别为阶正

4、定矩阵,试判定分块矩阵是否是正定矩阵.十二、(本题满分7分)假设测量的随机误差,试求100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率,并利用泊松分布求出的近似值(要求小数点后取两位有效数字).附表1 2 3 4 5 6 7 0.368 0.135 0.050 0.018 0.007 0.002 0.001 十三、(本题满分5分)一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30.假设各部件的状态相互独立,以表示同时需要调整的部件数,试求的数学期望和方差.十四、(本题满分4分)设二维随机变量的概率密度为(1) 求随机变量的密度; (2)

5、 求概率.1992年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分.)(1)【答案】【解析】根据,得价格,又由得,按照经济学需求弹性的定义,有,令,解得.所以商品价格的取值范围是.(2)【答案】【解析】因题设的幂级数是缺项幂级数,故可直接用比值判别法讨论其收敛性.首先当即时级数收敛.当时,后项比前项取绝对值求极限有当,即当或时级数绝对收敛.又当和时得正项级数,由级数:当时收敛;当时发散.所以正项级数是发散的.综合可得级数的收敛域是.注:本题也可作换元后,按如下通常求收敛半径的办法讨论幂级数的收敛性.【相关知识点】收敛半径的求法:如果,其中是幂级数的相邻

6、两项的系数,则这幂级数的收敛半径 (3)【答案】【解析】这是一个二重积分的累次积分,改换积分次序时,先表成:原式由累次积分的内外层积分限确定积分区域:, 即中最低点的纵坐标,最高点的纵坐标,的左边界的方程是,即的右支,的右边界的方程是即的右半圆,从而画出的图形如图中的阴影部分,从图形可见,且所以(4)【答案】【解析】由拉普拉斯展开式, .【相关知识点】两种特殊的拉普拉斯展开式:设是阶矩阵,是阶矩阵,则 .(5)【答案】【解析】按古典概型求出基本事件总数和有利的基本事件即可. 设所求概率为,易见,这是一个古典型概率的计算问题,将给出的七个字母任意排成一行,其全部的等可能排法为7!种,即基本事件总

7、数为,而有利于事件的样本点数为,即有利事件的基本事件数为4,根据古典概型公式.二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(B)【解析】方法1:为“”型的极限未定式,又分子分母在点处导数都存在,所以可应用洛必达法则. .故应选(B).方法2: 特殊值法.取,则.显然(A),(C),(D)均不正确,故选(B).【相关知识点】对积分上限的函数的求导公式:若,均一阶可导,则.(2)【答案】(D)【解析】由于时,故是同阶无穷小,可见应选(D).(3)【答案】(A)【解析】齐次方程组只有零解.由于的行秩的列秩,现是矩阵,即的列向量线性无关.故应选(A).【相关知识点】对齐次线性方程

8、组,有定理如下:对矩阵按列分块,有,则的向量形式为那么, 有非零解线性相关 (4)【答案】(B)【解析】依题意:由“当事件与同时发生时,事件必发生”得出,故;由概率的广义加法公式推出;又由概率的性质,我们得出,因此应选(B).(5)【答案】(C)【解析】根据简单随机样本的性质,可以将视为取自方差为的某总体的简单随机样本,与是样本均值与样本方差.由于样本方差是总体方差的无偏估计量,因此,否则若,则,.故不能选(A).对于正态总体, 与相互独立,由于总体的分布未知,不能选(D).同样因总体分布未知,也不能选(B).综上分析,应选(C).进一步分析,由于样本方差是的一致估计量,其连续函数一定也是的一

9、致估计量.三、(本题满分5分)【解析】函数在处连续,则要求.方法1:利用洛必达法则求极限,因为为“”型的极限未定式,又分子分母在点处导数都存在,所以连续应用两次洛必达法则,有 .而,故,所以在处不连续.若令,则函数在处连续.方法2:利用变量代换与等价无穷小代换,时,;.求极限,令,则有 .以下同方法1.四、(本题满分5分)【解析】用分部积分法:, 其中为任意常数.注:分部积分法的关键是要选好谁先进入积分号的问题,如果选择不当可能引起更繁杂的计算,最后甚至算不出结果来.在做题的时候应该好好总结,积累经验.【相关知识点】分部积分公式:假定与均具有连续的导函数,则 或者 五、(本题满分5分)【解析】

10、这是带抽象函数记号的复合函数的二阶混合偏导数,重要的是要分清函数是如何复合的.由于混合偏导数在连续条件下与求导次序无关,所以本题可以先求,再求.由复合函数求导法,首先求,由题设 ,再对求偏导数,即得 .【相关知识点】多元复合函数求导法则:如果函数都在点具有对及对的偏导数,函数在对应点具有连续偏导数,则复合函数在点的两个偏导数存在,且有;.六、(本题满分5分)【解析】两端对求导,得.记,有通解,其中为任意常数.由原方程易见,代入求得参数.从而所求函数.【相关知识点】一阶线性非齐次方程的通解为 , 其中为任意常数.七、(本题满分6分)【解析】方法1:令,则.因为在连续,所以在上为常数,因为常数的导

11、数恒为0.故,即. 方法2:令,则在上连续,在内可导,由拉格朗日中值定理知,至少存在一点,使得由复合函数求导法则,得 ,所以.由可得,当时,.【相关知识点】复合函数求导法则:如果在点可导,而在点可导,则复合函数在点可导,且其导数为 或 .八、(本题满分9分)【解析】对于问题(1),先利用定积分求旋转体的公式求,并求出极限.问题(2)是导数在求最值中的应用,首先建立目标函数,即面积函数,然后求最大值.(1)将曲线表成是的函数,套用旋转体体积公式.由题设知,得.(2) 过曲线上已知点的切线方程为,其中当存在时, .设切点为,则切线方程为.令,得,令,得.由三角形面积计算公式,有切线与两个坐标轴夹的

12、面积为.因令得(舍去).由于当时,;当时,.故当时,面积有极大值,此问题中即为最大值.故所求切点是,最大面积为 .【相关知识点】由连续曲线、直线及轴所围成的曲边梯形绕轴旋转一周所得的旋转体体积为:.九、(本题满分7分)【解析】因为,故可用相似矩阵的性质建立方程组来求解参数和的值.若,则是的特征向量.求可逆矩阵就是求的特征向量.(1) 因为,故其特征多项式相同,即即.由于是的多项式,由的任意性,令,得. 令,得.由上两式解出与.(2) 由(1)知.因为恰好是对角阵,所以马上可得出矩阵的特征值,矩阵的特征值是.当时,由,得到属于特征值的特征向量. 当时,由,得到属于特征值的特征向量.当时,由,.得到属于特征值的特征向量.那么令,有.十、(本题满分6分)【解析】对于条件应当有两个思路:一是的列向量是齐次方程组的解;另一个是秩的信息即.要有这两种思考问题的意识.(1) 方法1:令,对3阶矩阵,由,知必有,否则可逆,从而,这与矛盾. 故,用行列式的等价变换,将第三列加到第二列上,再按第二列展开,有.解出.方法2:因为,故中至少有一个非零列向量.依题意,所给齐次方程组有非零解,得系数矩阵的列向量组线性相关,于是,以下同方法一.(2) 反证法:对于,若,则可逆,那么.与已知条件矛盾.故假设不成立,.【相关知识点】对齐次线性方程组,有定理如下:对矩阵按

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 商业/管理/HR > 管理学资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号