【2017年整理】电涌保护器应用中的几个问题的探讨

上传人:德****1 文档编号:1008978 上传时间:2017-05-25 格式:DOC 页数:3 大小:26KB
返回 下载 相关 举报
【2017年整理】电涌保护器应用中的几个问题的探讨_第1页
第1页 / 共3页
【2017年整理】电涌保护器应用中的几个问题的探讨_第2页
第2页 / 共3页
【2017年整理】电涌保护器应用中的几个问题的探讨_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《【2017年整理】电涌保护器应用中的几个问题的探讨》由会员分享,可在线阅读,更多相关《【2017年整理】电涌保护器应用中的几个问题的探讨(3页珍藏版)》请在金锄头文库上搜索。

1、摘要:探讨了电涌保护器(SPD)应用中的 4 个颇有争议的问题,这就是 SPD 的响应时间、多级 SPD 的动作顺序、不同波形冲击电流的等效变换以及 SPD 的残压与冲击电流峰值的关系。最后说明了 SPD 应用中各电压之间的相互关系。关键词:电涌保护器、响应时间、冲击电流、防雷保护一、前言电涌保护器(SPD)是抑制由雷电、电气系统操作或静电等所产生的冲击电压,保护电子信息技术产品必不可少的器件。随着各种电子信息技术产品越来越多地渗入到社会和家庭生活的各个领域,SPD 的使用范围日益扩大,市场需求量日益增长。总的来说,电子信息技术产品的过电压保护还是一个新的技术领域,两相关于 SPD 的国际标准

2、IEC61643-1 和 IEC61643-21 发表才几年,有关 SPD 应用中的许多问题还存在着争议,本文就其中的 4 个问题提出笔者个人的看法,以期引起讨论。它们是:SPD 的响应时间,多级 SPD 的动作顺序,不同波形冲击电流的等效变换以及 SPD 的残压与冲击电流峰值的关系。最后对 SPD 应用中各个电压之间的相互关系作了说明。二、SPD 的响应时间不少人错误地认为,响应时间是衡量 SPD 保护性能的一个重要指标,制造厂也在其技术资料中列明了这一参数,但许多制造厂并不知道它的确切含义,也未进行过测量。一个流行的观点是,在响应时间内,SPD 对入侵的冲击无抑制作用,冲击电压是 原样透过

3、SPD 而作用在下级的设备上。这不符合 SPD 的是工作情况,是错误的。SPD 中对冲击过电压起抑制作用的非线性元件,按其工作机理可区分为 限压型(如压敏电阻器、稳压二极管)和开关型 (如气体放电管、可控硅) 。氧化锌压敏电阻器是一种化合物半导体器件,其中的电流对于加在它上面的电压的响应本质上是很快的。图 1 位美国 GE 公司用不带引线的压敏电阻进行抑制冲击电压的实验所得到的示波图1。图中的曲线1 是不加压敏电阻时的冲击电压,曲线 2 是被压敏电阻抑制后的波形。由图可以清楚地看出,氧化锌压敏电阻抑制冲击电压作用的延时小于 1ns。那么,以前的技术资料中所说的用压敏电阻构成的 SPD 响应时间

4、 r25ns 是怎么回事呢?这是技术标准 IEEEC62.33-19822中定义的响应时间,它是一个用来表征 过冲特性的物理量,与通常意义上的响应时间是完全不同的另外一个概念。为了说明这一点,下面将 IEEEC62.33-1982 第 6.3 条款引述如下(见图 2) 。IEEEC62.3(6.3)电压过冲(UOS) 。在冲击电流波前很陡、数值又很大时,测量带引线压敏电阻的限制电压的结果表明,它大于以 8/20 标准波时的限制电压(图 2 的 Uc) 。这种电压增量 UOS 称作过冲。尽管压敏电阻材料本身对陡冲击的响应时间有所不同,但差别不大。造成过冲的主要原因是在器件的载流引线周围建立起了磁

5、场,该此磁场在器件引线和被保护线路之间的环路中,或者在引线与模拟被保护线路的测量电路之间的环路感应出电压。在典型的使用情况下,一定的引线长度是不可避免的,这种附加电压将加在压敏电阻器后面的被保护线路上,所以在冲击波波前很陡而数值又很大的条件下测量限制电压时,必须认识到电压过冲对于引线长度和环路耦合的依赖关系,而不能把过冲作为器件内在的特性来看待。 近几年来发表的国际电工委员会关于 SPD 的技术标准 IEC61643-1 和 IEC6163-21 都没有引入响应时间这一参数:IEEE 技术标准 C62.62-2000更明确指出,波前响应的技术要求对 SPD 的典型应用而言是没有必要的,可能引起

6、技术要求上的误导,因此如无特别要求,不规定该技术要求,也不进行试验、测量、计算或其他认证。这是因为:(1) 对于冲击保护这一目的而言,在规定条件下测得的限制电压,才是十分重要的特性。(2) SPD 对波前的响应特性不仅与 SPD 的内部电抗以及对冲击电压起限制作用的非线性元件的导电机理有关,还与侵入冲击波的上升速率和冲击源阻抗有关,连接线的长短和接线方式也有重要影响。笔者认为,对于电源保护用 SPD,以下三项技术指标是重要的: 限制电压(保护电平) ;通流能力(冲击电流稳定性) ;3 连续工作电压寿命。三、多级 SPD 的动作顺序当单级 SPD 不能将入侵的冲击过电压抑制到规定保护电平以下时,

7、就要采用含有二级、三级或更多级非线性抑制元件的 SPD。图 3 是个两级保护 SPD 的例子。图中非线性元件 Rv2 和 Rv2 都是压敏电阻,实用中 RV1 也可以使气体放电管,v2 也可以是稳压管或浪涌抑制二极管(TVS 管) 。两极之间的隔离元件 Zs 可以是电感 Ls 或电阻 Rs,若 RV1 和 RV2 的导通电压分别是 Un1 和 Un2,所选用的元件总是 Un2 Un1。有人认为,当入侵冲击波加在 X-E 端子上时,总是第一级 RV1 先导铜,然后才是第二级。实际上,第一级或第二级先导通都是可能的,这取决于以下因素:(1) 入侵冲击波的波形,主要是电流波前的声速(di/dt) ;

8、(2) 非线性元件 Rv1 和 RV2 的导通电压 Un1 和 Un2 的相对大小;(3) 隔离阻抗 Zs 的性质是电阻还是电感,以及它们的大小。当 Zs 为电阻 Rs 时,多数情况是第二级先导通。第二级导通后,当冲击电流 I 上升到 iRsUn2 Un1 是第一级才导通。第一级导通后,由于在大电流下第一级的等效阻抗比 Rs 加第二级的等效阻抗之和小得多。因而大部分冲击电流经第一级泄放,而经第二级泄放的电流则要小得多。若第一级为气体放电管,它导通后的残压通常低于第二级的导通电压 Un2,于是第二级截止,剩余冲击电流全部经第一级气体放电管泄放。若 Zs 为电感 Ls,且侵入电流一开始的上升速度相

9、当快,条件 Ls(di/dt)Un2Un1 得到满足,则第一级先导通。若第一级导通时的限制电压为 Uc1(1),则以后随着入侵冲击电流升速(di/dt)的下降,当条件 UC1(1) Ls (di/dt)Un2 得到满足时,第二级才导通。第二级导通后,将输出端 Y 的电压,抑制在一个较低的电平上。四、不同波形冲击电流的等效变换SPD 的冲击电流试验会碰到诸如 8/20、10/350、10/1000 或 2ms 等不同波形,那么从对于 SPD 的破坏作用等效的角度看,如何进行不同波形冲击电流的峰值换算,有人主张按电荷量相等的原则进行换算。按照这一原则,只要将两种不同波形的电流波对时间积分,求得总的

10、电荷量,令两个电荷量相等,就可得到两种波的电流峰值之间的比例关系了。这种变换方法与泄放冲击电流的元件没有一点关系,显然是不切合实际的。还有人主张按能量相等的原则进行换算。按照这一原则,不仅要知道两个电流波形,还要知道当这两个电流波流入电压抑制元件时,该元件两端限制电压的波形,然后将各个时刻对应的电流值和电压值相乘而得出功率波,再将功率波对时间积分得出能量,令两个能量值相等,就可得到两个电流峰值之间的比例关系了。这种变换方法考虑到了具体的非线性元件,但没有考虑冲击电流的热效应和电流值很大时的电动力效应。实际上就氧化锌压敏电阻而言,它能承受的 8/20 冲击电流的能量比承受 2ms 时的能量大,如

11、图 4 所示4。该图表明了厚度为 1.3mm 的早期压敏电阻样品能承受的冲击电流能量随电极面积的变化。可见,能量相等的原则至少对压敏电阻是不适用的。对氧化锌压敏电阻在大电流下破坏机理的研究得出了下述结果4;在大电流作用下,压敏电阻的破坏模式有两种(见图 5) ,当大冲击电流的时间宽度不大于 50s 时(例如 4/10 和 8/20 波) ,电阻体开裂;当电流值较小而时间宽度大于 100s 时(例如 10/350、10/1000 和 2ms 波) ,电阻体穿孔。两种不同破坏模式可以这样解释:时间很短的大电流在电阻体内产生的热量来不及向周围传导,是个绝热过程,加上电阻体的不均匀使电流的分布不均匀,

12、这样电阻体不同部位之间的温差很大,形成很大的热应力而使电阻体开裂。当冲击电流的作用时间较长时,电阻体不均匀造成的电流集中,使电阻体材料熔化而形成穿孔。图 5 的实验曲线表明,使用压敏电阻体破坏的电流密度 J(Acm-2)与冲击电流波的时间宽度 r(s)之间的关系,在双对数坐标中大体为一条斜率为负值的直线,因而可用下面的方程式来表达:logJ=CKlogr式中,C 和 K 是与具体器件相关的两个常数,可以根据实验资料推算出来,于是就可以计算出这种产品能够承受的不同波形冲击电流的峰值了。综上所述,对于以压敏电阻作为非线性抑制元件的 SPD,为进行不同波形冲击电流之间的等效变换,应以两种不同波形(例 8/20、10/350)的冲击电流对所选定的压敏电阻进行试验,分别得出使试样失效的两个电流峰值,代入上式,求得常数 C 和 K 的具体数值,然后利用该公式进行计算。试验式不一定进行到样品开裂或穿孔,可将压敏电压变化达到-10%作为失效判据。应当指出,就是不同企业、不同批次的压敏电阻器,尽管尺寸规格相同,但实际能承受的冲击电流(能量)的水平可能相差很大,因此必须对每批供货逐批抽样检验

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 行业资料 > 其它行业文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号