牛顿第二定律的应用经典

上传人:F****n 文档编号:100254114 上传时间:2019-09-22 格式:DOC 页数:14 大小:572KB
返回 下载 相关 举报
牛顿第二定律的应用经典_第1页
第1页 / 共14页
牛顿第二定律的应用经典_第2页
第2页 / 共14页
牛顿第二定律的应用经典_第3页
第3页 / 共14页
牛顿第二定律的应用经典_第4页
第4页 / 共14页
牛顿第二定律的应用经典_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《牛顿第二定律的应用经典》由会员分享,可在线阅读,更多相关《牛顿第二定律的应用经典(14页珍藏版)》请在金锄头文库上搜索。

1、牛顿第二定律的应用(二) 【学习目标】 1、知道利用整体法和隔离法分析连接体问题。 2、知道瞬时加速度的计算方法。 3、知道临界法、程序法、假设法在牛顿第二定律中的应用。 4、学会利用图像处理动力学问题的方法。 【重点、难点】 掌握临界法、程序法、假设法、图象法、整体法和分隔法,并能利用它们处理物理问题。 【知识精讲】 一、整体法和隔离法分析连接体问题 在研究力与运动的关系时,常会涉及相互关联物体间的相互作用问题,即连接体问题。在求解连接体问题时,整体法和隔离法相互依存,相互补充,交替使用,形成一个完整的统一体。 在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小

2、和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量)。如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程。隔离法和整体法是互相依存,互相补充的,两种方法互相配合交替应用,常能更有效地解决有关连接体的问题。 例1、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面

3、下滑,稳定时弹簧秤示数为F2,测得斜面倾角为,由以上数据可算出木板与斜面间的动摩擦因数为(只能用题中给出的已知量表示)。 解析:把木板、小球、弹簧看成一个整体,应用整体法。 木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。 设,它们的加速度为a, 则可得:(m球m木)gsin(m球m木)gcos(m球m木)a可得:agsingcos 隔离小球,对小球应用隔离法, 对小球受力分析有:mgsinF2ma 而:mgsinF1 由得:F2mgcos 由得tan 例2、如图示,两个质量均为m的完全相同的物块,中间用绳连接,若绳能够承受的最大拉力为T,现将两物块放在光滑水平面上,用拉力F1

4、拉一物块时,恰好能将连接绳拉断;倘若把两物块放在粗糙水平面上,用拉力F2拉一物块时(设拉力大于摩擦力),也恰好将连接绳拉断,比较F1、F2的大小可知( )。 A、F1F2 B、F1F2 C、F1F2D、无法确定 解析:(1)当放置在光滑水平面上时。 由于两物体的加速度相同,可以把它们看成一个整体,对此应用整体法。 由Fma可知,两物体的整体加速度。 在求绳子张力时,必须把物体隔离(否则,绳子张力就是系统内力),应用隔离法。 隔离后一物体,则绳子的张力:。 (2)当放置在粗糙水平面上时,同样应用整体法与隔离法。 设每个物块到的滑动摩擦力为F,则整体加速度。隔离后一个物体,则绳子的张力可见这种情况

5、下,外力都等于绳子的最大张力T的两倍,故选项C正确。 答案:C。 二、瞬时加速度的分析 分析物体在某一时刻的瞬时加速度,关键是分析那一时刻前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意两种基本模型的建立。 (1)钢性绳(或接触面):认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要恢复弹性形变时间。一般题目中所给细线和接触面在不加特殊说明时,均可按此模型处理。(2) 弹簧(或橡皮绳):此种物体的特点是形变量大,恢复弹性形变需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。 例3、质量分别为mA和mB的两个小球,用一根轻弹簧

6、联结后用细线悬挂在顶板下,如图所示,当细线被剪断的瞬间。关于两球下落加速度的说法中,正确的是 ( ) A、aAaB0B、aAaBg C、aAg,aB0 D、aAg,aB0 解析:分别以A、B两球为研究对象。当细线束剪断前,A球受到竖直向下的重力mAg、弹簧的弹力T,竖直向上细线的拉力T;B球受到竖直向下的重力mBg,竖直向上弹簧的弹力T,如下图。 它们都处于力平衡状态,因此满足条件, T mBg TmAgT(mAmB)g 细线剪断的瞬间,拉力T消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态。所以,B的加速度aB0,而A球则在重力和弹簧的弹力作用下,其瞬时加速度为: 答案

7、选C。 例4、如下图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量之比是l23,设所有接触面都光滑,当沿水平方向抽出木块C的瞬间,木块A和B的加速度分别是aA,aB。 解析:在抽出木块C前,弹簧的弹力FmAg。抽出木块C瞬间,弹簧弹力不变,所以,A所受合力仍为零,故aA0。木块B所受合力FBmBgF,所以。答案:三、临界问题的分析与求解 在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用极限分析法,看物体在不同的加速度时,会有哪些现象发生,尽快找出临

8、界点,求出临界条件。 例5、如图所示,斜面是光滑的,一个质量是0.2kg的小球用细绳吊在倾角为53的斜面顶端。斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力。 解析:必须先求出小球离开斜面的临界值a0,然后,才能确定某一状态下小球是否在斜面上。 处于临界状态时小球受力如图示: 则有:mgcotma0解得:a0gcot7.5m/s2a8m/s2a0小球在此时已经离开斜面 绳子的拉力斜面对小球的弹力:N0 例6、一个弹簧放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量 M=10.5kg,Q的质量m1.5

9、kg,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如下图所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s以后,F为恒力,求:力F的最大值与最小值。(取g=l0m/s2) 解析:(1)P做匀加速运动,它受到的合外力一定是恒力。P受到的合外力共有3个:重力、向上的力F及对Q对P的支持力FN,其中重力Mg为恒力,FN为变力,题目说0.2s以后F为恒力,说明t0.2s的时刻,正是P与Q开始脱离接触的时刻,即临界点。 (2)t0.2s的时刻,是Q对P的作用力FN恰好为零的时刻,此时刻P与Q具有相同的速度及加速度。因此,此时刻弹簧并未恢复原长,也不能认为

10、此时刻弹簧的弹力为零。 (3)当t0时刻,应是力F最小的时刻,此时刻F小(Mm)a(a为它们的加速度)。随后,由于弹簧弹力逐渐变小,而P与Q受到的合力保持不变,因此,力F逐渐变大,至t0.2s时刻,F增至最大,此时刻F大M(ga)。 以上三点中第(2)点是解决此问题的关键所在,只有明确了P与Q脱离接触的瞬间情况,才能确定这0.2s时间内物体的位移,从而求出加速度a,其余问题也就迎刃而解了。 解:设开始时弹簧压缩量为x1,t0.2s时弹簧的压缩量为x2,物体P的加速度为a,则有: kx1(Mm)g kx2mgma x1x2 由式得:解式得:a6m/s2力F的最大值:F小(Mm)a72N 力F的最

11、大值:F大M(ga)168N 四、利用图象求解动力学与运动学的题目 图象在中学物理解题中应用十分广泛,这是因为它具有以下优点: 能形象地表达物理规律; 能直观地描述物理过程; 能鲜明地表示物理量之间的依赖关系。 因此,理解图象的意义,自觉地运用图象分析物理规律是十分必要的。 在理解图象所表示的物理规律时要注意: (1)看清坐标轴所表示的物理量及单位,并注意坐标原点是否从零开始。 (2)图象上每一点都对应着两个数,沿图象上各点移动,反映着一个量随另一量变化的函数关系。因此,图象都应该与一个代数方程相对应。 (3)图象上任一点的斜率,反映了该点处一个量随另一个量变化的快慢(变化率),如st图象中的

12、斜率为速度,vt图象中的斜率为加速度。 (4)一般图象与它对应的横轴(或纵轴)之间的面积,往往也能代表一个物理量,如vt图象中,曲线与t轴所夹的面积代表位移。 例7、放在水平地面上的一物块,受到方向不变的水平推力的作用,F的大小与时间t的关系和物块速度v与时间t的关系,如图甲、乙所示。取重力加速度g10m/s2。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数分别为 ( ) A、m0.5kg,0.4 B、m1.5kg,C、m0.5kg,0.2 D、m1kg,0.2 解析:由vt图可知在02s 静止,24s是以初速度为0,加速度a2m/s2做匀加速运动,46s内以v4m/s做匀速直线运

13、动,结合Ft图像可分析得出:mg2N,ma3N2N,解得m0.5kg,0.4。 答案选A。 五、程序法解题 程序法:按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法,程序法解题的基本思路是: (1)划分出题目中有多少个不同的过程或多少个不同的状态。 (2)对各个过程或各个状态进行具体分析,得出正确的结果。 (3)前一个过程的结束就是后一个过程的开始,两个过程的交接点是问题的关键。 例8:如下图所示,一根轻质弹簧上端固定,下挂一质量为m0的平盘,盘中有物体质量为m,当盘静止时,弹簧伸长了l,现向下拉盘使弹簧再伸长l后停止,然后松开放开,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于: A、(1B、(1)mg C、D、答案:B。 解析: 题目描述主要有两个状态:(1)未用手拉时盘处于静止状态;(2)松手时盘处于向上加速状态,对于这两个状态,分析即可: 当弹簧伸长l静止时,对整体有 当刚松手时,对整体有: 对m有:Fmgma 对、解得:说明:在求解物体系从一种运动过程(或状态)变化到另种运动过程(或状态)的力学问题(称之为“程序题 ”)时,通常用“程序法”求解。要求我们从读题开始,就要注意到题中能划分多少个不同的过程或多少个不同的状态,然后对各个过程或各个

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号