文档详情

2 842 空间点、直线、平面

新**
实名认证
店铺
DOCX
281.40KB
约17页
文档ID:472570999
2 842 空间点、直线、平面_第1页
1/17

考点学习目标核心素养空间两直线的位置关系了解空间两条直线间的位置关系,理解异面直线的定义直观想象直线与平面的位置关系了解直线与平面之间的三种位置关 系,并能判断直线与平面的位置关系,会用符号语言和 图形语言表示直观想象、逻辑推理平面与平面的位置关系了解平面与平面之间的两种位置关 系,并能判断两个平面的位置关系,会用符号语言和图形语 言表示直观想象、逻辑推理预习教材P128—P131的内容,思考以下问题:1 . 空间两直线有哪几种位置关系?2.直线与平面的位置关系有哪几种?3.平面与平面的位置关系有哪几种?4.如何用符号和图形表示直线与平面的位置关系?5.如何用符号和图形表示平面与平面的位置关系?1.空间中直线与直线的位置关系(1)异面直线① 定义:把不同在仟何一个平面内的两条直线叫做异面直线;② 画法:(通常用平面衬托)(2) 空间两条直线的位置关系' [相交直线:在同一平面内,有且只有一个公共点;共面直线』[平行直线:在同一平面内,没有公共点;、异面直线:不同在仟何一个平面内,没有公共点.■名师点拨 ⑴异面直线的定义表明异面直线不具备确定平面的条件•异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有aua,bup,即 a , b分别在两个不同的平面内,但是因为aAb = O ,所以a与b不是异面直线.2.空间中直线与平面的位置关系位置关系直线a在平面a内直线a在平面a外直线a与平面a相交直线a与平面a平行公共点无数个公共点有且只有 一个公共点没有公共点付号表小au aaH a =Aa〃 a图形表示汽 a口■名师点拨 —般地,直线a在平面a内时,应把直线a画在表示平面a的平行四边形内;直线a与平 面a相交时,应画成直线a与平面a有且只有一个公共点,被平面a遮住的部分画成虚线或不 画;直线a与平面a平行时,应画成直线a与表示平面a的平行四边形的一条边平行,并画在 表示平面a的平行四边形外.3.空间中平面与平面的位置关系位置关系两个平面平行两个平面相交公共点没有公共点有无数个公共点(在一条直线上)付号表小a 〃“a H P=l图形表小■名师点拨 (1) 画两个互相平行的平面时,要注意使表示平面的两个平行四边形的对应边平行.(2) 以后我们说到“两条直线”均指不重合的两条直线,“两个平面”均指不重合的两个平面.7 我检测Q判断(正确的打“厂,错误的打“乂”)(1) 异面直线没有公共点.()(2) 没有公共点的两条直线是异面直线.()(3) 两条异面直线一定在两个不同的平面内.()(4) 分别在两个平面内的直线一定是异面直线.()(5) 若a与b是异面直线且a与c也是异面直线,则b与c是异面直线.( )(6) 若直线l与平面«不相交,则直线l与平面«平行.( )(7) 如果直线a, b和平面a满足all a, b〃 a,那么a〃b.( )(8) 如果直线a, b和平面a满足alb, al a , b a,那么bl a.( )(9) 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行.()(10) 若两个平面都平行于同一条直线,则这两个平面平行.()答案:(1) V ⑵X ⑶M ⑷X ⑸X ⑹X ⑺X ⑻V ⑼X (10) X®异面直线是指()A. 空间中两条不相交的直线B. 分别位于两个不同平面内的两条直线C. 平面内的一条直线与平面外的一条直线D. 不同在任何一个平面内的两条直线解析:选D.对于A,空间两条不相交的直线有两种可能,一是平行(共面),另一个是异面,所以A应排除•对于B,分别位于两个平面内的直(占1 / 线,既可能平行也可能相交也可能异面,如图,就是相交的情况,所以b n 7应排除•对于C,如图中的a,b可看作是平面a内的一条直线a与平面a夕卜的一条直线b,显 然它们是相交直线,所以C应排除•只有D符合定义.®正方体的六个面中相互平行的平面有()A. 2对 B. 3对C. 4对 D. 5对解析:选B.前后两个面、左右两个面、上下两个面都平行.O直线alb, bu a,则a与a的位置关系是()A. al a B. a与a相交C. a与a不相交 D. au a解析:选C.当直线alb , bua时,直线a与平面a的位置关系有可能是ala或aua,不可能相交,所以选 C.®正方体ABCD-A1B1C1D1的各个面中与直线AQ平行的平面有 个.解析:由正方体图形特点,知直线A1B1与平面CC1D1D和平面ABCD平行.答案: 2採究点空间两直线位置关系的判定系:面内不a , b年GAB与l是异面直线(如图).1.三棱锥 A-BCD 的六条棱所在直线成异面直线的有( )A.3 对 B.4 对例I 如图,在长方体ABCD-A1B1C1D1中,判断下列直线的位置关① 直线A1B与直线D1C的位置关系是_② 直线A1B与直线B1C的位置关系是_③ 直线D1D与直线D1C的位置关系是④ 直线AB与直线B1C的位置关系是_解析】 经探究可知直线 A1B 与直线 D1C 在平面 A1BCD1 中,且没有交点,则两直线平 行,所以①应该填“平行”;点A, B、B1在平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C异面•同理,直线AB与直线B1C异面•所以②④应该填“异面”;直线D1D与 直线DC相交于D]点,所以③应该填“相交”.【答案】 ①平行 ②异面 ③相交 ④异面(1)判定两条直线平行或相交的方法判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以用基本事实4(下节学习)判断.(2)判定两条直线是异面直线的方法① 定义法:由定义判断两直线不可能在同一平面内;② 重要结论:连接平面内一点与平面外一点的直线,和这个平经过此点的直线是异面直线•用符号语言可表示为A年a, Bwa, luC.5 对 D.6 对解析:选A.三棱锥A-BCD的六条棱所在直线中, 成异面直线的有:AB和CD , AD和BC , BD和AC ,所以三棱锥A-BCD的六条棱所在直线成异面直线的有3对•故选A.C2 .若直线a〃b, b A c—A,则a与c的位置关系是( )A.异面 B.相交C.平行 D.异面或相交解析:选D.a与c不可能平行,若a〃c,又因为a〃b,所以b〃c,这与bAc =A矛盾,但a 与 c 异面、相交都有可能.直线与平面的位置关系例*下列命题:① 直线l平行于平面a内的无数条直线,则l〃a;② 若直线a在平面a外,则alia;③ 若直线a〃b,直线bu a,则alia;④ 若直线a〃b, bua,那么直线a就平行于平面a内的无数条直线.其中真命题的个数为( )A. 1 B. 2C. 3 D. 4【解析】 因为直线l虽与平面a内无数条直线平行,但l有可能在平面a内,所以l不一定平行于a,所以①是假命题.因为直线a在平面a外包括两种情况:aia和a与a相交,所以a和a不一定平行,所以②是假命题.因为直线a〃b , bua,则只能说明a和b无公共点,但a可能在平面a内,所以a不一定 平行于a,所以③是假命题.因为a〃b , bua,所以aua或a〃a,所以a可以与平面a内的无数条直线平行,所以④是真命题.综上,真命题的个数为 1.答案】 A反恿归纳判断直线与平面的位置关系应注意的问题(1)在判断直线与平面的位置关系时,直线在平面内、直线与平面相交、直线与平面平行,这三种情况都要考虑到,避免疏忽或遗漏.(2)解决此类问题时,可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.1.若直线a〃平面a,直线b〃平面a,则a与b的位置关系是( )A.平行B.相交C.异面D.以上都有可能/ 幼/k.H[7iC解析:选D.如图所示,长方体ABCD-A1B1C1D1中,AQ II平面AC ,A"』平面AC,有 A1B1AA1D1=A1 ;又 DQI 平面 AC,有 A1B1ID1C1 ;取 BB1 和 CC的中点M, N,则MN 〃 BC ,则MN〃平面AC,有Ad与MN异面.2.下列命题正确的个数为( )① 若直线l上有无数个点不在平面a内,则a;② 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;③ 若直线l与平面a平行,则l与平面a内的任意一条直线都没有公共点.A. 0 B. 1C. 2 D. 3解析:选B.如图所示,借助长方体模型来判断•棱AA]所在直线有无数个点在平面ABCD 外,但棱AA]所在直线与平面ABCD相交,所以命题①不正确.A]BJIAB , A1B1所在直线平行于平面ABCD,但直线AB平面ABCD,所以命题②不正确.直线l与平面a平行,则l与a无公共点,l与平面a内所有直线都没有公共点,所以命题③ 正确.琛究点囤平面与平面的位置关系例」 已知在两个平面内分别有一条直线,并且这两条直线互相平行,那么这两个平面的 位置关系一定是( )B.相交D.以上都不对A. 平行C.平行或相交解析】 如图,可能会出现以下两种情况:答案】 C1. [变条件 ]在本例中,若将条件“这两条直线互相平行”改为“这两条直线是异面直 线”,则两平面的位置关系如何?解:如图,aua, bup, a , b异面,则两平面平行或相交.2 .[变条件]在本例中,若将条件改为平面a内有无数条直线与平面0平行,那么平面a与平面B的关系是什么?解:如图,a内都有无数条直线与平面0平行.由图知,平面 a 与平面 0 可能平行或相交.3. [变条件]在本例中,若将条件改为平面 a 内的任意一条直线与平面 0 平行,那么平面 a 与平面 0 的关系是什么?解:因为平面a内的任意一条直线与平面0平行,所以只有这两个平面平行才能做到,所以平面 a 与平面 0 平行.(1)平面与平面的位置关系的判断方法①平面与平面相交的判断,主要是以基本事实3为依据找出一个交点;②平面与平面平行的判断,主要是说明两个平面没有公共点.(2)常见的平面和平面平行的模型①棱柱、棱台、圆柱、圆台的上下底面平行;②长方体的六个面中,三组相对面平行.下列说法中正确的个数是(① 平面«与平面0, Y都相交,则这三个平面有2条或3条交线;② 如果a,b是两条直线,a〃b,那么a平行于经过b的任何一个平面;③ 直线a不平行于平面a,则a不平行于a内任何一条直线;④ 如果a〃0, a〃a,那么a〃几B.1A.0C.2D.3解析:选A.①中,交线也可能是1条;②a也可能在经过b的平面内;③中a不平行于平面a,则a可能在平面a内,平面a内有与a平行的直线;④中,a可能在0内•故四个命题都是 错误的,选A.点、线、面位置关系图形的画法4 如图所示,G是正方体ABCD-A1B1C1D1的棱DD1延长线上的一点。

下载提示
相似文档
正为您匹配相似的精品文档